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ABSTRACT

This paper investigates the potential of the polynomial LMMSE esti-
mation for nonlinear/nongaussian estimation problems. This is done
by a case study: the estimation of the frequency of a sinusoidal sig-
nal with unknown amplitude and phase. We give analytical formu-
las to calculate the second order moments which are needed for the
polynomial LMMSE estimation and we study the performance for
varying orders of observations. Variable selection is used to identify
the most relevant observations. It turns out that only a small num-
ber (less than one percent) of all available variables gives nearly the
same mean squared error.

Index Terms— Linear MMSE estimation, Frequency estimation,
Variable selection

1. INTRODUCTION

Linear minimum mean squared error (LMMSE) estimation is widely
used in estimation theory. There are two reasons for this: One is that
knowing the second order moments allows us to directly state the
LMMSE estimator since a closed form solution exists (Wiener-Hopf
equation). The other reason is its simple implementation and evalu-
ation which are desirable for online estimation problems. However,
the LMMSE estimator has the drawback that it will perform poorly
if the estimation problem is nonlinear and/or nongaussian noise is
present. One natural extension of the LMMSE principle for such
problems is the use of a polynomial LMMSE (PLMMSE) estima-
tor. It introduces an augmented observation vector that includes also
higher order products of the available observations, see e.g. [1–3].
Similar to a Taylor series expansion, one hopes to obtain a good esti-
mator with such a truncated Volterra series expansion. Especially
for the case that there is no physical model for the nonlinearity,
PLMMSE is still capable of modeling the nonlinearity. However,
it is often not clear how large the required polynomial order should
be to achieve a certain performance.

The aim of this paper is to investigate the potential of the PLMMSE
estimator for a nonlinear estimation problem. As a case study, we
investigate the task of estimating the frequency of a sinusoidal sig-
nal with unknown amplitude and phase in additive white Gaussian
noise [4–7]. We choose this example since this nonlinear estimation
problem allows us to give analytically the second order moments of
the elements of the augmented observation vector instead of estimat-
ing them. Consequently, any limitation of the estimator performance
is due to the PLMMSE approach and not to an uncertainty in the cor-
relation matrices.

It is not our intention to show that the performance of PLMMSE is
close to that of a maximum likelihood (ML) estimation which is eas-
ily feasible in this case. The former does not need any signal model
while the latter relies on a perfect probabilistic signal model. We use
this example only to study several issues of PLMMSE. Particularly,
we would like to answer the following questions:

• How large is the performance gain by incorporating addi-
tional higher order observations?

• How does the condition number of the autocorrelation ma-
trix depend on the polynomial order? What is the maximum
polynomial order for a certain computation precision?

• How can we identify the relevant observations? How many
relevant observations are there?

Following notations are used throughout this paper: x denotes
a column vector, X a matrix and in particular I the identity ma-
trix. The Kronecker product, trace operator, matrix transpose and
euclidean norm are denoted by ⊗, tr{.}, (.)T and ‖.‖, respectively.`

n

k

´
= n!

(n−k)!k!
is the binomial coefficient.

2. POLYNOMIAL LMMSE ESTIMATION

The LMMSE estimation principle is well-known in signal process-
ing, see e.g. [8]. It has the minimum mean squared error (MSE)
among all possible linear estimators. Let θ be the real-valued, un-
known parameter vector that should be estimated from the obser-

vations x =
ˆ
x1, . . . , xN

˜T
∈ R

N . Minimizing the MSE J =

E‖θ − θ̂‖2 = E‖θ −Wx‖2 yields the LMMSE estimator

θ̂ = Wx = RθxR
−1
xx x (1)

where Rθx = E[θ xT ] is the cross-correlation matrix and Rxx =
E[x xT ] the (auto-)correlation matrix. The minimum MSE for (1) is
Jmin = E‖θ‖2 − tr{RθxR

−1
xx R

T
θx}. Compared to the MMSE esti-

mator, the LMMSE estimator will be clearly suboptimal in general.
In [9], Balakrishnan analyzed the problem how to identify that the
MMSE estimator is of a specific (polynomial) form. If we have, for
example, a joint Gaussian probability density function p(θ, x), then
the optimum MMSE estimator is linear in x and therefore equivalent
to the LMMSE estimator. This is known as the Bayesian Gauss-
Markov theorem [8].

However, in most cases the LMMSE will have a limited perfor-
mance. One possibility to overcome this is the use of an augmented
observation vector y instead of x which also includes products of
elements in x. If we e.g. include all elements up to the quadratic

terms of x, then y has the form y =
ˆ
1 xT Rem{x ⊗ x}T

˜T

where Rem{.} is an operator that removes all redundant elements
of its argument, i.e.

Rem
nˆ

· · · x1x2 x2x1 · · ·
˜T
o

=
ˆ
· · · x1x2 · · ·

˜T
.

The highest sum of exponents for a product that occurs in the aug-
mented observation vector y is denoted as polynomial order D. In
[1–3], this idea was used with D = 2 and is called a linear-quadratic
or polynomial estimator.

In general, y has the form

y =
ˆ
1 xT Rem{x ⊗ x}T Rem{x ⊗ x ⊗ x}T · · ·

˜T
(2)

and (1) for the PLMMSE becomes θ̂ = Wy = RθyR
−1
yy y with
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Rθy = E[θ yT ] and Ryy = E[y yT ]. The idea of PLMMSE is
to obtain a better estimator with higher orders of x. The length of
the augmented observation vector y is L =

PD

d=0

`
N+d−1

d

´
which

quickly increases with D and N . Therefore, D and N can only take
moderate values. In the next section, we introduce the frequency
estimation problem we will investigate as a case study.

3. PLMMSE FREQUENCY ESTIMATION

To evaluate the performance of the PLMMSE approach, we consider
the following frequency estimation problem: Given are observations
x1, . . . , xN that stem from the signal model

xn = A cos(θn + φ) + zn, n = 1, . . . , N (3)

where A is an unknown amplitude, θ an unknown frequency and
φ an unknown phase. They are assumed to be uniformly distributed
random variables with A ∼ U(Amin, Amax), θ ∼ U(θmin, θmax), (0 ≤
θmin < θmax ≤ π) and φ ∼ U(−π, π). zn is a white Gaussian, zero-
mean noise process with variance σ2. A, θ, φ and zn are all inde-
pendent of each other. Note that this model also includes the case of
no a priori information about θ as we can set θmin = 0 and θmax = π.

We are only interested in the PLMMSE estimation of the angular
frequency θ as A and φ can be easily estimated if the frequency is

known [8]. The PLMMSE estimator for this problem is θ̂ = wT y

where w is the solution of the Wiener-Hopf equation wT
Ryy = rT

θy.
To calculate the correlation matrix Ryy and the cross-correlation
row vector rT

θy = E[θyT ], we need higher order moments of the
form

E[xm1
n1

x
m2
n2

. . . x
mk
nk

] and E[θx
m1
n1

x
m2
n2

. . . x
mk
nk

] (4)

where all ni and nj are pairwise different time instances. In the ap-
pendix, a formula is given to calculate these higher order moments.
It turns out that all moments in (4) are zero if m = m1 + . . . + mk

is odd. This is due to the symmetric probability density function of
zn and the integration over φ.

Because (4) are zero for all odd numbers of m, wT
Ryy = rT

θy

can be written as a set of two independent linear equation systems.
Since rT

θy =
ˆ
b0 0T bT

2 0T · · ·
˜

and

Ryy = E[y y
T ] =

2

6
6
6
4

A00 0T AT
20 0T ···

0 A11 0 A
T
31 ···

A20 0 A22 0 ···
0 A31 0 A33 ···

...
...

...
...

3

7
7
7
5

where y has the form of (2), these two linear equation systems are

ˆ
w0 wT

2 · · ·
˜

2

4

A00 AT
20 ···

A20 A22 ···

...
...

3

5 =
ˆ
b0 bT

2 · · ·
˜

(5a)

for the even part and

ˆ
wT

1 wT
3 · · ·

˜

2

4

A11 A
T
31 ···

A31 A33 ···

...
...

3

5 =
ˆ
0T 0T · · ·

˜
(5b)

for the odd part where wT =
ˆ
w0 wT

1 wT
2 wT

3 · · ·
˜
. Eq.

(5b) has the solution w1 = 0, w3 = 0, . . . and all odd order elements
of the augmented observation vector y have no contribution to the
PLMMSE estimation. Hence, they are neglected below in our case
study.

4. EVALUATION OF THE PLMMSE

In this section, we evaluate the performance of the PLMMSE esti-
mator. We consider the following three important issues: Estimator

risk, condition number and variable selection corresponding to the
three questions in Sec. 1.

Poly. order D Length of y κ(Ryy) for (a) κ(Ryy) for (b)

2 56 1.48×104 7.07×101

4 771 5.87×108 3.36×103

6 5776 3.04×1013 2.53×105

8 30086 2.56×1018 2.93×107

Table 1. Condition number κ of Ryy

4.1. Estimator Risk

The risk of an estimator derived from a quadratic loss function is [10]

R(θ) = Ex|θ[(θ − θ̂(x))2] =
R
(θ − θ̂(x))2p(x|θ)dx. It is the

quadratic loss (θ−θ̂)2 averaged over the distribution of the measure-
ments x conditioned on a fixed θ. Fig. 1 and Fig. 2 show a contour
plot of the estimator risk in dB as a function of the true angular fre-

quency θ and the signal-to-noise ratio (SNR)
E[A2]

2σ2 for N = 10 ob-
servations and varying polynomial order D with θmin = 0, θmax = π.
We choose the amplitude of the sinusoid to vary uniformly within
Amin = 1 and Amax = 10. Note that the PLMMSE estimator with
D = 0 corresponds to the a priori estimator θ̂ = E[θ] = π

2
. This is

also the PLMMSE estimate for a low SNR and we included it in both
plots in dotted lines. The results show that an increase of D mostly
reduces the estimator risk as expected. However, we can also see
that the improvement becomes smaller with increasing polynomial
order.

For comparison, Fig. 2 shows the performance of the ML algo-
rithm [8] for the same input data. To maximize the log-likelihood
function for all three unknowns A, θ and φ, we first performed a
grid search within [Amin . . . Amax, θmin . . . θmax,−π . . . π]. The found
maximum is then used as initial value for the second step which
uses the Newton algorithm to find the maximum. Clearly, the ML
performs much better as it has a broader valley which is impor-
tant for frequency estimation. Additionally, we need to know the
SNR for the calculation of the correlation matrix Ryy and the cross-
correlation vector rT

θy . The ML estimator does not exploit this knowl-
edge.

It is obvious that the ML estimator for this nonlinear problem
performs better than the PLMMSE estimator as expected. However,
this comparison is not fair since the ML estimation assumes to know
the probabilistic signal model perfectly. This is not necessary for
PLMMSE that only needs to estimate Ryy and Rθy from the obser-
vations. The price for the lack of knowledge about the signal model
is a worse estimation performance.

4.2. Condition Number

To obtain the coefficient vector w, we have to solve the Wiener-Hopf
equation wT

Ryy = rT
θy. The condition number κ of Ryy gives a

bound on the accuracy of the solution w we obtain. Table 1 gives the
values of κ for two cases: (a) the same signal as in Sec. 4.1 and (b)
exact as in (a) except that A = 1 is now deterministic.

In both cases, the condition number of Ryy increases for an in-
creasing polynomial order D. In particular, in case (a) and if D ≥
8, we can no longer trust the results even using double precision
floating-point calculation because Ryy is ill conditioned. This con-
tradicts the observation from Sec. 4.1 that we need a large value D

to obtain a satisfactory MSE. The reason for a large condition num-
ber κ is the strong correlation, i.e. information redundancy among
some of the elements of the augmented observation vector y. This
redundancy motivates variable selection which we consider in the
next section.

4.3. Variable Selection

The number of elements L in the augmented observation vector y

increases rapidly with an increase in the polynomial order D or the
number of observations N . Therefore, the advantage of the LMMSE
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Fig. 1. Estimator risk in dB for D = 0, 2, 4 with N = 10
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Fig. 3. MSE in dB after using SFFS variable selection

estimator, namely its simple calculation, is lost if D or N are large.
Also the condition number of the correlation matrix Ryy limits the
maximal value of D. On the other hand, only a polynomial order that
is large enough enables us to obtain an acceptable MSE. A solution
to this problem is to use only the relevant elements in y because
not all elements in y have the same contribution to the PLMMSE
estimation. The key step to identify these relevant elements in y is
called variable selection. It allows us to reduce the number of used
elements in y and still retain a good estimator performance.

The task of variable selection for our problem can be stated as fol-
lows: Use a reduced-size augmented observation vector y′ = Py ∈

R
L′

and find the optimal selection matrix Popt ∈ R
L′×L (L′ < L)

among all possible selection matrices P ∈ R
L′×L of the same size.

The selection matrices P reduce the number of variables from L to

L′ and are composed of the unit row vectors of the surviving vari-
ables. The corresponding MSE for a particular P is

Jmin(P) = E‖θ‖2 − tr{RθyP
T (PRyyP

T )−1
PR

T
θy} (6)

with Jmin(Popt) ≤ Jmin(P) for all P of the same size.

Beside an exhaustive search to find the optimum Popt, two differ-
ent approaches can be distinguished. The first possibility is to use
sequential variable selection. In each step, a variable is added to or
removed from the active set. Probably the most prominent ones are
branch & bound algorithms that exploit the monotonicity of Jmin to
find the optimal variable set [11, 12], Matching pursuit [13] and the
sequential floating forward selection (SFFS) algorithm introduced
in [14, 15]. The second class of approaches is to use a regularized
least squares approach, as is done in [16] where the lasso is intro-
duced.

We use SFFS to select the relevant observations in y. It is well
known that the SFFS has a good trade-off between its computational
complexity and the quality of the selected variable subset [17]. In
each iteration, a new variable is added to the subset of selected vari-
ables (forward step) and conditionally the least significant variables
are excluded (backward step). Backward steps are applied as long as
the resulting subset is better than the previous subset with the same
number of variables. This conditional exclusion step can be moti-
vated by the fact that each new included variable may carry infor-
mation that was already present in other variables inside the selected
subset. Thus, the old variables can be taken out and the redundancy
is reduced without losing too much estimation performance. As the
optimization criterion (6) involves the inversion of a matrix where
only one row and column was added or deleted during a SFFS for-
ward/backward step, the block-matrix inversion lemma can be used
to compute (PRyyP

T )−1 recursively as shown in [11].

Fig. 3 shows the result of the variable selection. The dotted lines
indicate the mean squared error if all variables for a given polyno-
mial order D are used. Clearly, we see that only a small number of
variables is needed to achieve nearly the same MSE. For example,
if D = 8, 200 out of 30086 variables (less than 1%) are sufficient.
This indicates that most of the elements in the augmented vector y

are redundant and that we can use variable selection to identify them.

5. CONCLUSION

The problem of estimating an unknown parameter using a polyno-
mial LMMSE estimator was investigated in this paper. It is shown
in a case study of frequency estimation that only a sufficiently large
polynomial order allows a good estimation performance if we do not
know the signal model at all. A high polynomial order, however,
results in two problems: high computational complexity due to a
large length of y and ill condition of Ryy due to strong correlation
of some elements of y. In order to combat these problems, the SFFS
algorithm was considered. It is shown that the SFFS yields almost
the same performance with only a small percentage of selected ele-
ments from y.

As we have to learn Ryy and Rθy in practice, a second impor-
tant case study is to investigate the influence of estimation errors
on the overall MSE. Simulation results during our studies revealed
that the higher order moments are more sensitive to the number of
samples used to estimate the correlation matrices and thus also the
number of available training data limits the maximum polynomial
order. Another important issue, which we currently do not consider,
is the comparison of the PLMMSE approach with other regression
approaches, e.g. Kernel methods. We would like to investigate these
two open points in a follow-up paper.
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"
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i=1
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#

=
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>>>>><
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Sb(
Pk

i=1 ni(2ri − li)) l even (11)

APPENDIX: HIGHER ORDER MOMENTS

For the calculation of the optimal weight vector w, we need higher
order moments of the form E[θbxm1

n1
xm2

n2
. . . x

mk
nk ] with m = m1 +

· · · + mk and b ∈ {0, 1}. b = 0 gives the elements of Ryy and
b = 1 the elements of rT

θy. Using the binomial formula (α+β)m =
Pm

l=0

`
m

l

´
αlβm−l, we obtain (7) which is shown at the top of this

page. Note that we exploited the independence of A, θ, φ and zni

for all ni with i = 1, . . . , k.

After this expansion, we have a sum of terms in (7) that are com-
posed of the following elements:

E[zmi−li
ni

] =

8

<

:

0 mi − li odd
σmi−li

2(mi−li)/2

(mi−li)!

(
mi−li

2
)!

mi − li even
(8)

E
h

A
l1 · · ·Alk

i

= E[Al] =
1

l + 1

Al+1
max − Al+1

min

Amax − Amin

(9)

where we used l = l1 + · · · lk. In addition,

E

"

θ
b

kY

i=1

cosli(θni + φ)

#

=
1

2l
E

"

θ
b

kY

i=1

“

e
jθnie

jφ + e
−jθnie

−jφ
”li

#

=
1

2l
E

"

θ
b

kY

i=1

liX

ri=0

 

li

ri

!

e
jθni(2ri−li)e

jφ(2ri−li)

#

=
1

2l
E

2

4θ
b

l1X

r1=0

· · ·

lkX

rk=0

 

l1

r1

!

· · ·

 

lk

rk

!

×

e
jθ

Pk
i=1 ni(2ri−li)e

jφ
Pk

i=1(2ri−li)
i

. (10)

When we calculate the expectation in the last line of (10) with re-
spect to φ, it will be zero if

Pk

i=1(2ri − li) �= 0. This is the case
for all elements in (10) if l = l1 + · · · + lk is odd. If l is even, there
will be some

Pk

i=1(2ri − li) = 0 and the higher order moment is
unequal to zero. Hence, (10) can be simplified to (11) shown at the
top of this page where Sb(n) = Re{E[θbejθn]} is given by

S0(n) =

(

1 n = 0
sin(θmaxn)−sin(θminn)

n(θmax−θmin)
otherwise

and (12a)

S1(n) =

8

>><

>>:

θmax+θmin
2

n = 0

cos(θmaxn)−cos(θminn)

n2(θmax−θmin)

+ sin(θmaxn)θmax−sin(θminn)θmin

n(θmax−θmin)

otherwise
. (12b)
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