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ABSTRACT

This paper considers the problem of constrained tracking the time-
varying room impulse response of a source/microphone pair. The
constraint which is used to improve the performance stems from
the energy conservation that has to hold for real-world impulse re-
sponses. We consider three different recursive estimators and com-
pare their performance with the recursive weighted least squares al-
gorithm which does not take the constraint into account. The simu-
lation results show that exploiting this constraint decreases the mean
squared error and is thus interesting for applications, especially in
the low SNR regime.

Index Terms— Constrained recursive estimation, Room im-
pulse response tracking, Energy conservation

1. INTRODUCTION
In this paper, we study the tracking of a room impulse response
(RIR) which is time-varying. In particular, we consider the fol-
lowing setup: Let θ(n) = [θ0(n) · · · θM−1(n)]

T denote the RIR
which we want to estimate and let s(n) = [s0(n) · · · sS−1(n)]

T

be the known signal which is transmitted by the source at time in-
stance n. The corresponding microphone signal x(n) = [x0(n) · · ·
xK−1(n)]

T with length K = M + S − 1 is given by

x(n) = Θ(n)s(n) + z(n) = S(n)θ(n) + z(n) (1)

where Θ(n) ∈ R
K×S and S(n) ∈ R

K×M are Toeplitz matrices
that consist of shifted column vectors θ(n) and s(n), i.e.

Θ(n) =

⎡
⎢⎣

θ(n) 0

θ(n)

. . .
0 θ(n)

⎤
⎥⎦ , S(n) =

⎡
⎢⎣

s(n) 0

s(n)

. . .
0 s(n)

⎤
⎥⎦ .

Eq. (1) describes a “burst model” where we assume that the RIR
is stationary for one input burst s(n). The noise z(n) in (1) is
Gaussian with z(n) ∼ N (0,C(n)) and temporally uncorrelated,
i.e. E[z(n1)z(n2)

T ] = 0 for all n1 �= n2.
A popular approach in adaptive filtering is the weighted least

squares (WLS) estimator which can also be applied to the signal
model in (1). The WLS estimator is given by

θ̂WLS(n) = argmin
θ

n∑
i=0

βn−i×

(x(i)− S(i)θ)T C(i)−1 (x(i)− S(i)θ) (2)

where 0 ≤ β ≤ 1 is the exponential forgetting factor which marks
past measurements less valuable than recent ones. This estimator
can be efficiently calculated by the recursive weighted least squares
(RWLS) algorithm [1] which we will briefly review in Sec. 2.1.

In this paper, we study problem (1) with the additional energy

conservation constraint

‖Θ(n)s(n)‖2 ≤ ‖s(n)‖2, (3)

which states that the energy of the received signal does not exceed
the energy of the transmitted signal. Using this additional con-
straint will allow the design of estimators which have a smaller
mean squared error (MSE) than the RWLS algorithm. The recursive
estimators that will be derived are the three estimators which we
considered in [2]: the recursive constrained maximum likelihood
(RCML), the recursive affine minimax (RAMX) and the recursive
minimum mean squared error (RMMSE) estimator. They allow the
incorporation of general constraints like the energy conservation (3).
Thus, the paper gives a particular example for these three estimators.

Beside the many techniques to estimate RIR, which differ in the
different choices of excitation signals [3], Lin proposed in [4] two
constraints to improve the RIR estimation for the stationary case. He
introduced the nonnegativity constraints θm ≥ 0,m = 0, . . . ,M−1
and added an l1-norm penalty which controls the sparsity of the so-
lution. It is shown that adding such constraints to the RIR estima-
tion improves the robustness to different noise distributions and de-
creases the mean squared error. Adding such additional constraints
to the RCML, RAMX and RMMSE is also possible and can be done
in a straightforward way. Therefore, we will focus in this paper on
the energy conservation constraint (3) to improve the tracking per-
formance.

The paper is organized as follows: Sec. 2 briefly reviews the
general problem of recursive estimation with constraints and intro-
duces the RCML, RAMX and RMMSE estimators. In Sec. 3, two
suitable representations and an approximation of the energy conser-
vation constraint (3) are derived. Sec. 4 then summarizes the RCML,
RAMX and RMMSE for our RIR estimation problem and Sec. 5 fi-
nally gives some simulation results.

Following notations are used: x denotes a column vector, X
a matrix and in particular I the identity matrix. The trace, matrix
transpose and euclidean norm are denoted by tr{.}, (.)T and ‖.‖,
respectively.

2. EFFICIENT RECURSIVE ESTIMATION IN A LINEAR,
TIME-VARIANT GAUSSIAN MODEL

In this section, we will briefly summarize three recursive estima-
tors from [2] for a time-variant estimation problem with general con-
straints. The interested reader is referred to [2] for a more detailed
discussion and comparison of the three approaches.

2.1. Signal Model and Sufficient Statistics
Consider the estimation of an unknown, time-variant parameter vec-
tor θ0(n) from observations x(n) ∈ R

K of a linear, time-varying
Gaussian model

x(n) = S(n)θ0(n) + z(n), n ≥ 0. (4)
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S(n) ∈ R
K×M is a known model matrix, z(n) is Gaussian noise

with z(n) ∼ N (0,C(n)) which is temporally uncorrelated, i.e.
E[z(n1)z(n2)

T ] = 0 for all n1 �= n2, and n denotes the discrete
time. In addition, we assume to know a priori θ0(n) ∈ Θ, whereΘ is
an arbitrary subset of RM . Thus, the task is to estimate θ0(n) for all
n ≥ 0 subject to θ0(n) ∈ Θ given all observations x(0), . . . , x(n).

Motivated by the WLS estimator (2), the estimation problem (4)
was reformulated in [2] into

xn = Snθ(n) + zn, θ(n) ∈ Θ (5)

where xn, Sn and zn are stacked versions of x(i), S(i) and z(i) for
i = 0, . . . , n, respectively:

xn = [x(n)T · · · x(0)T ]
T
, Sn = [S(n)T · · · S(0)T ]

T
,

zn = [z(n)T β−1/2z(n− 1)T · · · β−n/2z(0)T ]
T
. (6)

As the noise z(n) is temporally uncorrelated, we have zn ∼
N (0,Cn) where the covariance matrix Cn ∈ R

(n+1)K×(n+1)K is
the block diagonal matrix

Cn = diag
(
C(n), β−1

C(n− 1), · · · , β−n
C(0)

)
. (7)

The unconstrained ML estimator to (5) is identical to the WLS es-
timator (2) with forgetting factor β. Clearly, θ(n) in (5) is different
from θ0(n) in (4) as (5) is an approximation of the original sig-
nal model (4) for a slowly varying parameter θ0(n). This approx-
imation, however, has proved to be useful in many applications. If
θ0(n) = θ0 is constant, θ̂WLS(n)will approach θ0 with increasing n.
For the case that θ0(n) changes slowly, θ̂WLS(n) will follow θ0(n).
The idea is now to use the signal model (5) and derive three estima-
tors which incorporate the constraint θ(n) ∈ Θ in different ways.

In order to avoid estimators with a growing computational com-
plexity, the concept of sufficient statistic can be used [5]. A suffi-
cient statistic for the frequentist problem (5) is given by t(xn) =

(ST
nC

−1
n Sn)

−1
S
T
nC

−1
n xn = θ̂WLS(n). An efficient way to com-

pute it is to use the RWLS algorithm [1]. According to the definition
of Sn in (6) and Cn in (7), both matrices can be written recursively

Sn+1 =

[
S(n+ 1)

Sn

]
, Cn+1 =

[
C(n+ 1) 0

0 β−1
Cn

]
.

This also implies

Rn+1 = S
T
n+1C

−1
n+1Sn+1

= βRn + S(n+ 1)TC(n+ 1)−1
S(n+ 1). (8)

By applying the matrix inversion lemma (A+BCD)−1 = A
−1−

A
−1

B
(
C

−1 +DA
−1

B
)−1

DA
−1, we can update R−1

n and the
parameter estimate θ̂WLS(n) in a time recursive way. Introducing the
gain matrixGn+1 = R

−1
n+1S(n+1)TC(n+1)−1, we finally obtain

the RWLS algorithm

θ̂WLS(n+ 1) = θ̂WLS(n)+

Gn+1

(
x(n+ 1)− S(n+ 1)θ̂WLS(n)

)
, (9a)

R
−1
n+1 =

1

β

(
R

−1
n −Gn+1S(n+ 1)R−1

n

)
. (9b)

At each time step, RWLS updates the sufficient statistic θ̂WLS(n) and
the inverse correlation matrix R−1

n . Both values are needed by the
recursive estimators below subject to the constraint θ(n) ∈ Θ.

2.2. Recursive Constrained Maximum Likelihood
The recursive constrained ML (RCML) estimator for (5) is given by

θ̂RCML(n) = argmin
θ∈Θ

(θ − θ̂WLS(n))
T
Rn(θ − θ̂WLS(n)). (10)

At each time step, we have to check θ̂WLS(n) ∈ Θ. If this is satisfied,
then θ̂RCML(n) = θ̂WLS(n). Otherwise, we have to find the minimum
of (θ − θ̂WLS(n))

T
Rn(θ − θ̂WLS(n)) on the boundary of Θ.

2.3. Recursive Affine Minimax Estimation
The recursive affine minimax estimator (RAMX) has the form [2, 6]

θ̂RAMX(n) = (I+M(n)) θ̂WLS(n) + u(n) (11)

whereM(n) and u(n) are the solution to the minimax problem

min
M,u

max
θ∈Θ

‖Mθ+u‖2 +tr
{
(I+M)R−1

n (I+M)T
}

(12)

and the inverse correlation matrix R
−1
n = (ST

nC
−1
n Sn)

−1 is up-
dated by the RWLS algorithm. The minimax problem (12) can be
rewritten in epigraphic form as shown in (13) at the top of the next
page. SinceR−1

n is time-varying, (13) has to be solved repeatedly at
each time step.

2.4. Recursive MMSE Estimation
The idea of the recursive MMSE (RMMSE) estimator is to refor-
mulate the frequentist problem (5) to a Bayesian problem where the
constraint θ(n) ∈ Θ is recast as a priori PDF which is uniform on
Θ, i.e.

p(θ(n)) =

{
const θ(n) ∈ Θ

0 otherwise
. (14)

Such a choice of prior can be motivated by the maximum entropy
principle [7]. It states that we should choose that prior which has the
most entropy among all distributions fulfilling the constraint θ ∈ Θ.
This is the density given in (14). If, for example, θ is known to lie in
the interval [a, b], then the distribution with the maximum entropy is
the uniform distribution on [a, b] (see e.g. [8]).

In [2], it is shown that, by using the concept of Bayesian suffi-
cient statistic, the MMSE estimator with the prior (14) is given by

θ̂RMMSE(n) =

∫
Θ
θ exp{− 1

2
(θ − θ̂WLS(n))

T
R

−1
n (θ − θ̂WLS(n))}dθ∫

Θ
exp{− 1

2
(θ − θ̂WLS(n))

TR
−1
n (θ − θ̂WLS(n))}dθ

.

The estimate θ̂RMMSE(n) is computed using Monte Carlo integration
where the samples are generated using rejection sampling [9].

After we have introduced the three recursive estimators that we
want to study in this paper, we now turn back to our room impulse
response estimation problem which we introduced in Sec. 1.

3. ENERGY CONSERVATION
To improve the estimation performance, we make use of the energy
conservation (3) which must hold for real-world impulse responses.
We first give two equivalent mathematical representations of (3) and
then show how to conveniently approximate them using the discrete
Fourier transform (DFT).

3.1. Mathematical Formulation
Expressing the energy conservation mathematically, we need to en-
sure that1

‖Θ(n)s(n)‖2 = s(n)TΘ(n)TΘ(n)s(n) ≤ s(n)T s(n) = ‖s(n)‖2

1We assume in this paper that the source and sensor gains are known, i.e.
we have no ambiguity in terms of a scaling of Θ(n)s(n). This can e.g. be
achieved by using a calibration step before estimating the RIR.
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min
M,u,τ

τ s.t.

[
θ

1

]T [
−M

T
M −M

Tu

−uT
M τ − tr

{
(I+M)R−1

n (I+M)T
}− uTu

][
θ

1

]
≥ 0 ∀ θ ∈ Θ (13)

which implies

Θ(n)TΘ(n)− I 	 0. (15)

Note that (15) has to hold for all signal lengths S. If the condition
is fulfilled for a particular signal length S, it is automatically ful-
filled for all smaller signal lengths since an upper-left submatrix of
a negative semidefinite matrix is again negative semidefinite. In the
following, we will now give two equivalent representations of the set
that is described by (15).

(a) LMI representation: Using Schur’s lemma [10], we can
rewrite (15) into [

I Θ(n)T

Θ(n) I

]

 0 (16)

which is a linear matrix inequality (LMI). Note that (16) immedi-
ately implies that (15) describes a convex set.

(b) Frequency domain representation: From above, we know
that it is sufficient to consider the case S → ∞. This case can be
efficiently computed using the theory of bandlimited Toeplitz matri-
ces [11, 12] as we will now show.

Eq. (15) is equivalent to requiring that all eigenvalues of
Θ(n)TΘ(n) are smaller or equal to 1. We will therefore now
show how the eigenvalues of Θ(n)TΘ(n) can be computed for
S → ∞. Let

r(n) =

⎧⎪⎨
⎪⎩

M−1−|n|∑
m=0

θm(n)θ|n|+m(n) |n| ≤ M − 1

0 otherwise
(17)

be the (unnormalized) auto-correlation function of the RIR θ(n).
Then, the matrix Θ(n)TΘ(n) ∈ R

S×S can be written as a sym-
metric Toeplitz matrix where the first row is given by r(n) for n =
0, . . . , S − 1. Note that Θ(n)TΘ(n) is bandlimited as only the
firstM − 1 off-diagonals are unequal to zero. Using the asymptotic
equivalence of the eigenvalues of a bandlimited Toeplitz matrix and
the corresponding circulant matrix, it immediately follows that the
condition (15) can be transformed into

|Θ(ω, n)|2 =

∣∣∣∣∣
M−1∑
m=0

θm(n)e−jωm

∣∣∣∣∣
2

≤ 1 ∀ω ∈ [0, 2π) (18)

whereΘ(ω, n) denotes the room frequency response at time instance
n. As we consider only real-valued impulse responses θ(n), it is
sufficient to restrict ω to [0, π] in (18).

3.2. Approximation using DFT
All three estimators will be based on (18) where we evaluateΘ(ω, n)
at discrete frequencies ωl using the DFT. Let ωl = 2πl

L
with l =

0, . . . , L − 1 be the equidistant frequency bins which we consider.
L ≥ M denotes the DFT length where L > M corresponds to the
case of zero-padding. As we only need to evaluate Θ(ω, n) in [0, π],
we have l = 0, . . . , L̃ with L̃ = L/2� where x� is the largest
integer not greater than x. Using vector notation, we can therefore
approximate (18) by

θT f
l
fH

l
θ ≤ 1 ∀ l = 0, . . . , L̃ (19)

where f
l
∈ C

M is composed of the first M elements of the lth
column of the DFT matrix U ∈ C

L×L, i.e. fH

l
= [ 1 e−jωl

· · · e−jωl(M−1) ]. Using the DFT, we can therefore approx-

imate Θ = {θ(n) : θ(n) fulfills (18)} by the new constraint
Θ̃ = {θ(n) : θ(n) fulfills (19)} with arbitrary precision if L is
chosen large enough.

In the following, we will see that it is convenient to consider the
zero-padded vector θ̃ ∈ R

L instead of θ ∈ R
M . Let P ∈ R

M×L

be the matrix that consists of the firstM rows of the identity matrix.
Then, introducing the zero-padded vector θ̃ = P

T θ, condition (19)
transforms into

θTPf̃
l
f̃
H

l
P

T θ = θ̃
T
f̃
l
f̃
H

l
θ̃ ≤ 1 ∀ l = 0, . . . , L̃ (20)

where f̃
l
∈ C

L is the lth column of the DFT matrixU ∈ C
L×L, i.e.

f̃
H

l
= [ 1 e−jωl · · · e−jωl(L−1) ] and f

l
= Pf̃

l
holds.

4. ROOM IMPULSE RESPONSE ESTIMATORS
In the following, we will describe in more detail the three recursive
tracking algorithms for the estimation of a time-varying RIR.

(a) Recursive CML: The RCML estimator θ̂RCML(n) for our problem
is given by (10) with the constraint (19). This is a quadratically con-
strained quadratic program which can be solved by standard convex
solvers [10].

For completeness, we would like to mention the transform θ̄ =

V
T θ̃ whereV ∈ R

L×L is an orthogonal matrix. Eq. (21) showsV
for the case that L is even. This transform can be used to simplify
the constraints to have the form θ̄20 ≤ 1

L
, θ̄2l + θ̄2

L̃+l
≤ 2

L
for all

1 ≤ l < L̃ and θ̄2
L̃
≤ 1

L
. Note that the transformation with V can

be efficiently calculated using the fast Fourier transform (FFT).

(b) Recursive AMX: To reduce the computational complexity of
RAMX, we consider the special case of u = 0 and M = αI, i.e.
we only allow a shrinkage by the factor 1 + α. Condition (20) is
equivalent to[

θ̃(n)
1

]T [
−f̃

l
f̃
H

l
0

0T 1

] [
θ̃(n)
1

]
≥ 0 ∀ l = 0, . . . , L̃ (22)

which has to be fulfilled for all l = 0, . . . , L̃. Now, the S-procedure
can be used to reformulate the optimization problem (13) into a
semidefinite program (SDP) [10]. The S-procedure shows that a suf-
ficient condition for the statement

for all z: zTF0z ≥ 0, . . . , zTFL̃z ≥ 0⇒ zTGz ≥ 0

to be true is the existence of λ0, . . . , λL̃ ≥ 0 such thatG 
 λ0F0+
· · · + λL̃FL̃. The optimization problem can therefore be rewritten
as

min
λ0≥0,...,λ

L̃
≥0

τ,α

τ (23a)

subject to

λ0f̃
0
f̃
H

0
+ · · ·+ λL̃f̃ L̃

fH

L̃

 α2

I, (23b)

τ − (1 + α)2 tr{R−1
n } ≥ λ0 + · · ·+ λL̃. (23c)

Note that (23) is still not a SDP as (23b) and (23c) are not linear in
α. However, using the same idea as in [13] and introducing a new
variable x and the constraint x ≥ α2, we finally obtain a SDP which
has the same solution as (23). Furthermore, the constraint (23b) can
be simplified by exploiting the fact that UH f̃

l
f̃
H

l
U = J

l,l where
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V =
1√
L

⎡
⎢⎢⎣

1
√

2 ··· √
2 1

√
2 ··· √

2

1
√

2 cos(ω1) ··· √
2 cos(ω

L̃−1
) cos(ω

L̃
)

√
2 sin(ω1) ··· √

2 sin(ω
L̃−1

)

...
...

...
...

...
...

1
√
2 cos(ω1(L−1)) ··· √

2 cos(ω
L̃−1

(L−1)) cos(ω
L̃
(L−1))

√
2 sin(ω1(L−1)) ··· √

2 sin(ω
L̃−1

(L−1))

⎤
⎥⎥⎦ (21)

J
i,j is the single-entry matrix which is all zero except a 1 at position

i, j. Hence, we can rewrite (23b) as the new set of constraints λl ≥
α2/L for all l = 0, . . . , L̃ and the following SDP is equivalent to
(23)

min
λ0≥0,...,λ

L̃
≥0

τ,α,x

τ (24a)

subject to

λl ≥ x/L (l = 0, . . . , L̃), (24b)[
x α
α 1

]

 0, (24c)

τ − (1 + 2α+ x) tr{R−1
n } ≥ λ0 + · · ·+ λL̃. (24d)

(c) Recursive MMSE: For the RMMSE, we use directly (18) for the
rejection sampling. A FFT of length L is used to calculate Θ(ω, n)
at discrete frequency points ωl. Note that (18) describes a convex
set. Therefore, we know that the estimate θ̂RMMSE(n) of the RMMSE
will lie in Θ, i.e. it fulfills the energy conservation constraint as was
pointed out in [2].

5. SIMULATION RESULTS
To compare the estimators, we consider the problem of estimating
the time-varying RIR of a moving source to a fixed microphone. The
room size is 3 × 3 × 2.3m. The source moves along a straight line
with an increment of 10cm between neighbouring positions. There
are N = 11 positions which implies that the source moves one
meter in total. At each discrete source position n, the RIR θ(n)
is calculated using an image source model [14] with the help of
the Matlab implementation from [15]. The T60 time of the room
is 120ms and the sampling frequency is fs = 12kHz. The image
source model returned RIRs with M = 1241 taps. The noise co-
variance is C(n) = σ2

I and the corresponding SNR is defined as
SNR = 10 log10‖Θ(n)s(n)‖2/((M + S − 1)σ2). To compare the
estimators, the normalized error measure E = 1/N

∑N
n=1‖θ̂(n) −

θ(n)‖2/‖θ(n)‖2 is used. The DFT length is chosen as L = 16 384
and the signal s(n) is a white Gaussian noise of length S = 100 such
that the total number of observations is K = M + S − 1 = 1 340.
The RMMSE estimator is calculated from I = 3 000 samples to
approximate the MMSE integrals.

Table 1 shows the simulation results for the four instantaneous
estimators WLS, CML, AMX and MMSE, which rely only on x(n)
and do not take past measurements into account (i.e. β = 0) and
the recursive estimators RWLS, RCML, RAMX and RMMSE. The
results are averaged over 200 trials. The optimal forgetting factors
are βopt ≈ 0.55 for a SNR of 5 dB and βopt ≈ 0.28 for a SNR of
10 dB. The results show that the energy conservation constraint im-
proves the estimation performance, especially for a SNR of 5 dB. If
the SNR is higher then all estimators are equivalent, e.g. the RCML
does not have to solve for the minimum on the boundary of Θ as
θ̂RWLS(n) ∈ Θ. The MMSE/RMMSE with a uniform prior shows
the best results among all estimators.

6. CONCLUSIONS
In this paper, we compared three recursive estimators for the time-
varying estimation of a room impulse response. We incorporated

the energy conservation which has to hold for real-world impulse
responses into the estimation process and the simulation results show
that the estimation error can be decreased, especially in the low SNR
regime. The recursive minimum mean squared error estimator with
a uniform prior showed the best results.

Note that more a priori knowledge about the room impulse re-
sponse, e.g. the knowledge that the distance between the source and
the microphone will never be below a minimum distance, would al-
low an even larger improvement compared to the ordinary RWLS
algorithm.
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SNR WLS CML AMX MMSE
5 dB 1.23×100 1.20×100 1.21×100 1.02×100

10 dB 3.88×10−1 3.88×10−1 3.87×10−1 3.72×10−1

SNR RWLS RCML RAMX RMMSE
5 dB 7.02×10−1 6.97×10−1 6.99×10−1 6.52×10−1

10 dB 2.98×10−1 2.98×10−1 2.98×10−1 2.94×10−1

Table 1: Normalized error of the estimated RIRs
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