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ABSTRACT

The estimation of an unknown parameter vector in a Gaussian linear

model is studied in this paper. Two different cases are analyzed: the

parameter vector is assumed to lie either in or on a given ellipsoid.

The best estimator in terms of the mean squared error is derived. The

performance of this estimator is analyzed and compared with the

ordinary least squares, the constrained least squares and the linear

minimax approach.

Index Terms— Parameter estimation, Minimum mean squared

error estimation, Restricted parameter space

1. INTRODUCTION

In this paper we consider the problem of estimating an unknown

parameter vector θ ∈ R
M from noisy measurements where it is a

priori known that the parameter vector is restricted to lie in a subset

of R
M . The two subset cases that are investigated are: the set of all

points inside an ellipsoid and the set of all points on the surface of

an ellipsoid. The first case has attracted a lot of interest in the past,

see e.g. [1–5] where the linear minimax estimator is sought which

minimizes the worst case mean squared error. It is well known that

the ordinary least squares estimator is outperformed by this estima-

tor. The second case is interesting for DOA estimation problems, see

e.g. [6] for an example where a parameter vector has to be estimated

that lies on a 3-D sphere which is a special case of the problem we

consider.

The contribution of this paper is twofold: First, we derive in

Sec. 3 the minimum mean squared error (MMSE) estimator for an

unknown parameter vector in a linear model with ellipsoidal con-

straints. We show that the two M -dimensional integrations can be

replaced by M one-dimensional integrations. Second, we analyze

in Sec. 5 its performance with respect to different error measures

and compare it with the ordinary least squares approach, the linear

minimax estimator from [2, 7], the constrained least squares estima-

tor and modifications of them. The simulation results show that the

MMSE estimator outperforms the other approaches at the expense

of an increased computational complexity.

Following notations are used throughout this paper: x denotes a

vector, X a matrix, and I the identity matrix. Furthermore, the error

function erf(x) is defined as erf(x) = 2√
π

R x

0
e−t2dt.

2. SIGNAL MODEL

We consider the linear signal model

x = Hθ + z (1)

where x ∈ R
N are observations of the unknown parameter vector

θ ∈ R
M with N ≥ M . H ∈ R

N×M is the known model ma-

trix with a full column rank M and z ∈ R
N the observation noise

which is Gaussian with z ∼ N (0,C). It is a priori known that the

parameter vector θ satisfies one of the following two constraints:

Case A: θ lies inside an ellipsoid R∗, i.e. θ ∈ R∗. The ellipsoid is

given by

R∗ = {θ : (θ − θ0)
T
Θ(θ − θ0) ≤ R2} (2a)

or

Case B: θ lies on an ellipsoid R̄∗, i.e. θ ∈ R̄∗, with

R̄∗ = {θ : (θ − θ0)
T
Θ(θ − θ0) = R2}. (2b)

The problem of finding a suitable estimator for θ is a well known

problem in signal processing. In [1] the linear minimax estimator for

H = I and C = σ2
I is derived if θ is restricted to lie in an ellipsoid.

This result was later extended in [2, 7].

In this paper, we will derive the MMSE estimator for this prob-

lem by modeling θ as uniformly distributed in R∗ or on R̄∗, re-

spectively. This is the fundamental difference of our approach to the

previous works which always assume θ to be deterministic. The uni-

form distribution of the MMSE estimator has the interpretation that

we only know that θ is restricted to lie in R∗ or on R̄∗, but no other

a priori information is available. Thus, our results are directly com-

parable to those which were derived in a deterministic framework.

3. CASE A: MMSE ESTIMATOR FOR θ ∈ R∗

We now derive the estimator for θ in (1) which has the minimum

mean squared error among all estimators. It is well known that the

MMSE estimator is the mean of the a posteriori distribution [8]:

θ̂ = E[θ|x] =

R

RM

θ px|θ(x|θ)pθ(θ)dθ

R

RM

px|θ(x|θ)pθ(θ)dθ
. (3)

It requires in general two M -dimensional integrations which can of-

ten not be solved analytically. In our case, however, we can simplify

these to M one-dimensional numerical integrations which are feasi-

ble. The derivation of the estimator is divided into three steps:

A. Transform the problem to one of estimating a vector in colored

noise. The ellipsoid in which θ lies is arbitrarily oriented.

B. Transform the problem to one of estimating a vector in white

noise where the axes of the ellipsoid are parallel to the coordinate

axes.

C. Give formulas for the remaining integrals.

Step A. As we assume θ ∈ R∗ and θ is a priori uniformly

distributed, it has the probability density function (pdf)

pθ(θ) =

(

const θ ∈ R∗

0 otherwise
(4)
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Furthermore, z ∼ N (0,C) and therefore we can write (3) as

θ̂ =

R

R∗

θ exp{− 1
2
(x − Hθ)T

C
−1(x − Hθ)}dθ

R

R∗

exp{− 1
2
(x −Hθ)T C−1(x − Hθ)}dθ

. (5)

Using the identity

(x−Hθ)T
C

−1(x−Hθ) = (θ−x̃)T
C̃

−1(θ−x̃)+xT
C

−1(x−Hx̃)
(6)

with C̃ = (HT
C

−1
H)−1 and x̃ = (HT

C
−1

H)−1
H

T
C

−1x, we

can further write

θ̂ =

R

R∗

θ exp{− 1
2
(θ − x̃)T

C̃
−1(θ − x̃)}dθ

R

R∗

exp{− 1
2
(θ − x̃)T C̃−1(θ − x̃)}dθ

. (7)

The term xT
C

−1(x − Hx̃) in (6) is independent of θ and is can-

celled. Thus, the problem in (1) can be transformed into a simpler

one by left-multiplying (1) with (HT
C

−1
H)−1

H
T
C

−1 which re-

sults in the signal model x̃ = θ + z̃. The problem is now to estimate

θ which is observed in colored noise z̃ ∼ N (0, C̃). Note, that x̃
represents the ordinary least squares estimate for θ. The MMSE es-

timator improves this estimate further by exploiting the restriction

θ ∈ R∗ and therefore shows a better performance. Thus, we can

conclude that the projection into the column space of H as done by

the least squares estimate x̃ does not neglect information which we

need for the MMSE estimator.

Step B. We define U as one matrix square root of C̃, i.e. C̃ =
U

T
U. One possibility is the Cholesky factor of C̃. Furthermore,

let V and D = diag(d1, . . . , dM ) be the matrix of eigenvectors and

eigenvalues of UΘU
T . Using the substitution θ− x̃ = U

T
Vy, (7)

reads

θ̂ =

R

R∗∗

(x̃ + U
T
Vy) exp{− 1

2
‖y‖2}dy

R

R∗∗

exp{− 1
2
‖y‖2}dy

= x̃ + U
T
V

R

R∗∗

y exp{− 1
2
‖y‖2}dy

R

R∗∗

exp{− 1
2
‖y‖2}dy

=: x̃ + U
T
V

i1
i2

(8)

where R∗∗ is the ellipsoid R∗∗ = {y : (y−y
0
)T

D(y−y
0
) ≤ R2}

with y
0

= (UT
V)−1(θ0 − x̃).

Step C. The MMSE estimator requires in general a mul-

tidimensional integration which is very computational demand-

ing. However, in this particular case the numerical integration

can be substantially simplified. In [9, 10] it is shown that i2

can be expressed as an infinite linear combination of χ2 distri-

butions, i.e. i2 = (2π)M/2 P∞
k=0 akG(R2/β; M + 2k) where

G(R2/β; M +2k) is the central χ2 cumulated distribution function

(cdf) with M + 2k degrees of freedom evaluated at position R2/β
and β is an arbitrary constant. The coefficients ak can be found by

the recursive rule

a0 =
M
Y

m=0

r

β

dm
e−y2

0m
/2, ak =

1

k

k−1
X

l=0

bk−lal

where bk = k
2

PM
m=1 y2

0mγk−1
m + 1

2

PM
m=1(1 − ky2

0m)γk
m, γm =

1 − β
dm

and y0m is the mth component of y
0
. The calculation of i2

is therefore straightforward where the summation is stopped if the

relative error is small enough. An estimate of the truncation error

is derived in [9] and was used as stopping criterion. It therefore

remains to calculate i1. Its mth element reads

i1m =

Z

R∗∗

yme−
1

2
‖y‖2

dy

=

y0m+ R√
dm

Z

y0m− R√
dm

yme−
1

2
y2

m

0

B

@

Z

R∗∗
m

e−
1

2
‖ỹ

m
‖2

dỹ
m

1

C

A
dym (9)

where ỹ
m

= Pmy is identical to y except for the removed mth

element. The selection matrix Pm ∈ R
(M−1)×M is the identity

matrix with the mth row erased. Note, that the inner integral is of

the same type as i2 and can thus also be expressed as an infinite se-

ries of χ2 cumulated density functions. The integration area R∗∗
m is

given by R∗∗
m = {ỹ

m
: (ỹ

m
−Pmy

0
)T

PmDP
T
m(ỹ

m
−Pmy

0
) ≤

R2 − dm(ym − y0m)2} and is a function of ym. Eq. (9) can be

efficiently solved by an one-dimensional numerical integration.

For the special case M = 1, i.e. θ = θ is a scalar, we can

simplify (8) further and give a closed-form solution for θ̂. Using

x̃ = hT
C

−1x/(hT
C

−1h), U = (hT
C

−1h)−1/2, V = 1, D =

d = Θ/(hT
C

−1h) and y0 = (hT
C

−1h)1/2(θ0 − x̃), we obtain

(10) at the bottom of this page.

4. CASE B: MMSE ESTIMATOR FOR θ ∈ R̄∗

For the case B that θ lies on the surface of an ellipsoid, i.e. θ ∈
R̄∗, we can use the estimator (8) found in Sec. 3 where all inte-

grations are now with respect to R̄∗ from (2b) and R̄∗∗ = {y :

(y − y
0
)T

D(y − y
0
) = R2} opposed to R∗ and R∗∗. Only the

θ̂ =
hT

C
−1x

hT
C−1h

+
1

(hT
C−1h)1/2

y0+ R√
d

R

y0− R√
d

ye−
1

2
y2

dy

y0+ R√
d

R

y0− R√
d

e−
1

2
y2

dy

=
hT

C
−1x

hT
C−1h

+
1

(hT
C−1h)1/2

2e−
1

2
(y2

0
+ R

2

d
) sinh

“

y0
R√
d

”

p

π
2

„

erf

„

y0+ R√
d√

2

«

− erf

„

y0− R√
d√

2

«« (10)
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third step where the integrals are solved has to be changed. It holds

i1m =

Z

R̄∗∗

yme−
1

2
‖y‖2

dy

=

y0m+ R√
dm

Z

y0m− R√
dm

yme−
1

2
y2

m

0

B

@

Z

R̄∗∗
m

e−
1

2
‖ỹ

m
‖2

dỹ
m

1

C

A
dym (11a)

i2 = (2π)M/2 2

β

∞
X

k=0

akg(R2/β; M + 2k) (11b)

where g(R2/β; M + 2k) is the central χ2 probability density func-

tion (pdf) with M + 2k degrees of freedom evaluated at position

R2/β. Similar to Sec. 3, we can express i2 as an infinite series of

χ2 densities and i1 is found again by M one-dimensional numerical

integrations.

5. SIMULATION RESULTS

In the following we show some simulation results for case A and B.

In both cases, M = 3 unknowns have to be estimated from N = 10
observations. The model matrix H is randomly chosen for each trial

and in total we average over 10 000 trials, except for Fig. 2 where

we average over 100 000 trials. The noise z has the distribution

N (0, σ2
I) and the signal-to-noise ratio (SNR) is defined as SNR =

10 log10‖Hθ‖2/(Nσ2). For case A, we assume that the parameter

vector θ is restricted to lie in the unit sphere R∗ = {θ : ‖θ‖2 ≤
1} and is uniformly distributed for the simulation. For case B, we

assume that θ is uniformly distributed on the unit sphere R̄∗ = {θ :
‖θ‖2 = 1}.

5.1. Case A

We compare the derived MMSE estimator with the following four

estimators for a spherical constraint:

• Ordinary LS estimator [8]

θ̂LS = (HT
C

−1
H)−1

H
T
C

−1x = x̃ (12)

• Modified ordinary LS estimator, inspired by [5]

θ̂MLS =

(

θ̂LS ‖θ̂LS‖ ≤ R
R

‖θ̂LS‖
θ̂LS ‖θ̂LS‖ > R

(13)

• Linear minimax estimator [2, 7]

θ̂MX =
R2

R2 + tr{(HT C−1H)−1}
θ̂LS (14)

• Modified minimax estimator [5]

θ̂MMX =

(

θ̂MX ‖θ̂MX‖ ≤ R
R

‖θ̂MX‖ θ̂MX ‖θ̂MX‖ > R
(15)

Fig. 1 shows the simulation results for the squared error ‖θ−θ̂‖2

averaged over all θ ∈ R∗. The derived MMSE estimator has clearly

the minimal averaged squared error and is therefore superior to the

other estimators as expected. It has, however, a higher computa-

tional complexity because of the M one-dimensional numerical in-

tegrations.

The second comparison is in terms of the risk of the linear mini-

max and the MMSE estimator. The risk of an estimator that corre-

sponds to a quadratic loss function is [8]

R(θ, θ̂) = Ex|θ‖θ − θ̂(x)‖2 =

Z

‖θ − θ̂(x)‖2p(x|θ)dx. (16)

It is the quadratic loss ‖θ − θ̂‖2 averaged over the distribution of

the measurements with θ fixed. This comparison is interesting as the

linear minimax estimator minimizes the worst case mean squared

error for each deterministic θ ∈ R∗ opposed to the MMSE estimator

which only considers the overall mean squared error. Note, that the

estimator risk is rotational invariant in the parameter space of θ as

the model matrix H is chosen randomly. Thus, it is sufficient to

plot the estimator risk as a function of the norm of θ only and the

risk in (16) is calculated by averaging the squared error over all θ
with ‖θ‖ = const. Fig. 2 depicts the simulation results for a SNR

of 0dB. It shows that the MMSE estimator is, except for a small

region around ‖θ‖ = 0.4, better than the linear minimax estimator.

Thus, although we derived the estimator which minimizes the mean

squared error averaged over all possible parameter vectors in R∗,

it is still almost always better in terms of the risk than the linear

minimax estimator which was designed to minimize the worst case

error for the deterministic case.

5.2. Case B

We compare the derived MMSE estimator with the ordinary least

squares estimator (12) and the following three estimators:

• Scaled ordinary LS estimator, inspired by [5]

θ̂ScLS =
R

‖θ̂LS‖
θ̂LS (17)

• Spherical LS estimator, corresponds to the class of con-

strained LS estimators [11]

θ̂SLS = min
θ

‖x − Hθ‖2
s.t. ‖θ‖ = R (18)

which we solved by expressing θ in spherical coordinates and

using a nonlinear least squares optimization procedure.

• Linear minimax estimator, which is for case B equal to the es-

timator given in (14) as the worst case MSE to be minimized

is always located on the boundary of the ellipsoid. Hence,

calculating the linear minimax estimator with respect to R̄∗

is equal to calculating it with respect to R∗.

Fig. 3 and 4 show simulation results for case B with respect to

the averaged squared error ‖θ− θ̂‖2 and the averaged angle between

θ and θ̂ in degrees cos−1
“

θT θ̂

‖θ‖‖θ̂‖

”

. The derived MMSE estimator is

superior to the other estimators for both error measures. Especially

the averaged angle error is interesting for DOA applications as in [6]

where it is important that θ and θ̂ point to the same direction.

6. CONCLUSIONS

In this paper we derived the MMSE estimator for a linear Gaussian

model under ellipsoidal constraints. It outperforms all other estima-

tors we know at the expense of a higher computational complexity.

A Matlab implementation of the MMSE estimator and the other con-

sidered estimators can be downloaded from [12].
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Fig. 1. Case A: Comparison of averaged squared error
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Fig. 3. Case B: Comparison of averaged squared error
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