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ABSTRACT

This paper introduces a new parametric family of Bayesian estima-
tors. As the estimation with non-standard loss functions can often
only be stated as an optimization problem which has to be solved for
each new observation, it is advantageous to use such a parametric
family. We proof that many well known estimators are included in
our family. Among them are the MMSE and MAP estimator as well
as the optimal Bayesian estimator (OBE) under LINEX loss. By re-
stricting the estimator to lie in this family, we split the estimation
problem into two parts: In a first step, we have to find the best esti-
mator with respect to the Bayes risk for a given loss function, which
has to be done only once. The second step then calculates the esti-
mate for a given observation. We demonstrate the usefulness of the
proposed parametric family in an example.

1. INTRODUCTION

Most often in Bayesian estimation, the MAP or MMSE estimators

are used to estimate an unknown parameter θ ∈ Θ ⊂ R
M from the

observation x ∈R
N . It is well known that the underlying loss func-

tions L(θ, θ̂) are the hit-or-miss loss and the quadratic loss [1]

LMAP(θ, θ̂) =

(

1 ‖θ− θ̂‖> δ

0 ‖θ− θ̂‖< δ
and (1a)

LMMSE(θ, θ̂) = (θ− θ̂)TW(θ− θ̂), W pos. def. (1b)

The reason that they are used so widely is often not their suitability
to the problem at hand but that the corresponding optimal Bayesian
estimators (OBE) are well known and, at least for the MAP estima-
tor, are often computable. They are the maximum and mean of the
a posteriori density p(θ|x). Powerful methods are available to cal-

culate the estimate θ̂ from an observation x, ranging from optimiza-
tion algorithms [1] and the Expectation-Maximization (EM) algo-
rithm [2] to sampling techniques including Markov chain Monte
Carlo methods [3].

In this paper, we will consider Bayesian estimation with other
than those loss functions given in (1). This problem is very impor-
tant for practical applications as the loss function should reflect the
cost that is connected with a certain estimation error, see. e.g. [4,5].
The following two examples illustrate this more clearly:

• Consider the problem of constructing a dam [6]. Underes-
timating the peak water level from older measurements is clearly
more serious than overestimating it and this fact should be reflected

in the choice of the loss function L(θ, θ̂). This example motivates
the use of an asymmetric loss function and it is obvious that the two
loss functions in (1) are not suited for such an estimation problem.

• Another example that gives rise to other loss functions than
those given in (1) can be found in the field of image processing.
Traditionally, the mean squared error is used to compare images and
therefore many algorithms are optimized for this loss function [7].
The problem with the MSE is that it does not well represent the
human perception. Images which have a small mean squared error
may still look very different and therefore in [7] it is suggested to
use other distance measures. One is the structural similarity (SSIM)
index, which was introduced by Wang in [8] and e.g. used in [9] for

the design of linear equalizers. Another related example that dis-
cusses the design of loss functions for the reconstruction of images
is given by Rue in [10].

However, calculating the OBE for many non-standard loss
functions is not trivial and it can often only be stated in terms of an
optimization problem which has to be solved for each new obser-
vation x. Therefore, we propose in this paper a parametric family
F of estimators which are suited for a large variety of loss func-
tions but still have a computationally complexity comparable to the
MMSE estimator for the same problem. Thus, using the best esti-
mator in F that has the smallest Bayes risk for a given loss function
will be a good approximation of the OBE. Our parametric family
of estimators can be viewed as a compromise between the perfect
OBE at the one side and a (nonlinear) regression approach on the
other. It trades off performance against computational complexity
as it will have a larger Bayes risk than the OBE but will be easier to
learn due to the small and fixed number of parameters compared to
a regression approach.

This paper is organized as follows: First, we review in Sec. 2 the
Bayesian estimation problem and introduce the OBE which mini-
mizes the Bayes risk. As the OBE can often not be computed in
closed form, we propose in Sec. 3 and 4 two new parametric fami-
lies of estimators. We start in Sec. 3 by considering a basic family
FB of estimators, which includes the MMSE and the MAP estima-
tor. This family, however, has the disadvantage that the underlying
loss functions are always symmetric. Therefore, we generalize the
estimator family in Sec. 4. This generalized family F also includes
the OBE under LINEX loss and is thus more versatile. In Sec. 5
we consider the general approach how to use the estimator family
and discuss its computational complexity. We show that we can use
importance sampling to efficiently compute an estimate. Finally,
an example in Sec. 6 demonstrates the usefulness of our parametric
family to approximate the OBE.

Following notations are used throughout this paper: x denotes
a column vector, X a matrix and in particular I the identity ma-
trix. The trace operator, determinant, matrix transpose and eu-

clidean norm are denoted by tr{.}, det{.}, (.)T and ‖.‖, respec-
tively. diag{x} returns a squared matrix which has the elements of
x on its diagonal. Finally, X◦Y denotes the elementwise product,
also known as Hadamard product.

2. REVIEW OF BAYESIAN ESTIMATION

Suppose we have an estimator θ̂(x) that estimates the unknown,

random parameter θ ∈ R
M from the observation x ∈ R

N . To eval-

uate the quality of the estimator, we assign a loss L(θ, θ̂) ≥ 0 to

the error of estimating θ̂(x) although the true value is θ. Following
different types of loss functions can be distinguished:

Definition. A loss function L(θ, θ̂) is called

(i) symmetric, if L(θ, θ̂) = L(−θ,−θ̂);

(ii) spherical, if L(θ, θ̂) = L̃(‖θ− θ̂‖).

Note, that a spherical loss function is also symmetric but the
converse is in general not true. An example is the loss (1b) which is
symmetric but not spherical for W 6= αI. Besides these two prop-
erties, scale invariance [11, 12] and boundedness [13, 14] are other
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characteristics of the loss function that may be desired for practical
applications.

Averaging this loss with respect to the joint probability density
function (PDF) p(θ,x) yields an important characteristic value for
an estimator. It is called the Bayes risk (BR) and given by [15]

BR =

ZZ

L(θ, θ̂(x))p(θ,x)dθdx. (2)

The optimal Bayesian estimator (OBE) is now that estimator that
minimizes the Bayes risk, i.e.

θ̂OBE(x) = argmin
θ̂(x)

BR = argmin
θ̂(x)

ZZ

L(θ, θ̂(x))p(θ,x)dθdx

= argmin
θ̂(x)

Z

L(θ, θ̂(x))p(θ|x)dθ (3)

where we used in the last line of (3) the fact that θ̂ is a function of x
and thus argmin

θ̂
BR is equivalent to minimizing the loss averaged

over the a posteriori distribution. Therefore, we immediately see
that all information to find the OBE is included in the a posteriori
density p(θ|x).

Assuming that the loss functionL(θ, θ̂) is differentiable, we can
calculate the first derivative with respect to the estimate and equate
it to zero to obtain a necessary condition to find the OBE, i.e.

∂

∂θ̂

Z

L(θ, θ̂(x))p(θ|x)dθ =

Z

∂L(θ, θ̂)

∂θ̂
p(θ|x)dθ

!
= 0. (4)

Solving (4) can often not be done analytically and therefore
Bayesian estimation with most loss functions is difficult. We will
thus introduce in the next section a parametric family FB of esti-
mators that will transform (3) into an optimization problem to find
one parameter. This family is then extended in Sec. 4 to asymmetric
loss functions.

3. BASIC FAMILY OF ESTIMATORS

3.1 Definition

Let FB be the set of estimators that have the form

θ̂(x;λ) =

R

θp(θ,x)λdθ
R

p(θ,x)λdθ
(5)

and are parameterized by λ. We call FB the basic family of

estimators. Thinking of p(θ,x)λ as a new (unnormalized) den-
sity, we see that (5) calculates the mean of the conditional density

p(θ,x)λ/
R

p(θ,x)λdθ and therefore looks similar to the MMSE
estimator except for the modified PDF.

Note that it is reasonable to restrict λ to positive values,
i.e. λ ∈ [0,∞). Otherwise we average over a new density

p(θ,x)λ/
R

p(θ,x)λdθ which is inverted in the sense that it has
large values at positions where p(θ|x) is small, i.e. it emphasizes

points (θ,x) ∈ R
M+N that are not likely to occur and we can ex-

pect therefore a poor performance for λ < 0.1

3.2 Relationship to other Estimators

In this section, we will show that FB includes three important esti-
mators, namely the uniform a priori MMSE estimator, the MMSE
estimator and the MAP estimator. By uniform a priori MMSE es-
timator, we refer to the estimator where we have no observation x

about θ ∈ Θ ⊂ R
M and the a priori distribution p(θ) is assumed

to be uniform in Θ. The estimator with the minimum MSE is
then the “center of gravity” of Θ, i.e. θ̂ = E[θ] =

R

θp(θ)dθ =
R

Θ θdθ/
R

Θ 1dθ which is well defined if Θ is bounded. The follow-
ing theorem proofs that all three estimators are in FB.

Theorem 1. The estimator family FB defined in (5) includes the
following special cases:

1For example the loss L(θ, θ̂) = 1−LMAP(θ, θ̂) results in seeking the

minimum of p(θ|x) which is related (but in general not identical) to θ̂(x;λ)
for λ →−∞.

(a) If Θ ⊂ R
M is bounded and p(θ,x) 6= 0 then θ̂(x;λ) for λ = 0

exists and is equivalent to the uniform a priori MMSE estimator.
(b) The case λ= 1 corresponds to the MMSE estimator.
(c) The case λ→∞ corresponds to the MAP estimator.

Proof. (a) Assuming Θ to be a bounded set on R
M , we immedi-

ately see that limλ→0 p(θ,x)
λ/
R

p(θ,x)λdθ = const., i.e. it
converges pointwise to a uniform distribution on Θ. Therefore,

θ̂(x;0) calculates the center of gravity of Θ which is equivalent
to the a priori MMSE estimator.

(b) Setting λ = 1 in (5), we obtain p(θ,x)/
R

p(θ,x)dθ = p(θ|x)

and thus θ̂(x;1) =
R

θp(θ|x)dθ = E[θ|x], which is the MMSE
estimator.

(c) To proof this theorem, we use a result from Pincus [16]: Given
a continuous function f(θ), which attains a global maximum at
exactly one point in Θ, then Pincus showed

argmax
θ
f(θ) = lim

λ→∞

R

Θ

θ f(θ)λdθ

R

Θ

f(θ)λdθ
. (6)

Using this theorem, we conclude that limλ→∞ θ̂(x;λ) is the
MAP estimator. �

3.3 Corresponding Loss Functions

Although it is interesting to see the relationship of this basic family
of estimators to other estimators, we also see that the loss functions
associated with λ= {0,1,∞} are all symmetric as they are the hit-
or-miss error (1a) and the squared error (1b). In the following, we
will proof in Theorem 2 that if there is a continuously differentiable

loss function that results in θ̂(x;λ), then the loss function has to be

symmetric.2 For the proof of Theorem 2, we need the following
Lemma. The proofs can be found in the appendix A.

Lemma. The estimator θ̂(x;λ) for the PDFs p(θ,x) = δ(θ− θ0)

and p(θ,x) =Pδ(θ−θ0)+(1−P )δ(θ−θ1) is given by θ̂(x;λ) =

θ0 and θ̂(x;λ) = (Pλθ0 +(1−P )λθ1)/(Pλ+(1−P )λ), respec-
tively.

Theorem 2. Let L(θ, θ̂) be a continuously differentiable loss func-

tion that results in the optimal Bayesian estimator θ̂(x;λ) for an

arbitrary PDF p(θ,x). Then L(θ, θ̂) is symmetric, i.e. L(θ, θ̂) =

L(−θ,−θ̂).

From this Theorem, we see that no estimator resulting from an
asymmetric, continuously differentiable loss function is included in
FB . However, we would like to cover such estimation problems due
to their practical relevance and hence we have to extend FB. This
is done in the next section.

4. GENERALIZATION TO ASYMMETRIC LOSS
FUNCTIONS

Let F be the set of estimators where each estimator has the form

θ̂(x;P) = f
1

 R

f
2
(θ;P2)p(θ,x)

λdθ
R

p(θ,x)λdθ
;P1

!

(7a)

and depends on the 2M+4 parameters P = {λ,P1,P2} with P1 =
{ξ1,φ1, . . . ,φM} and P2 = {ξ2, ξ3,ψ1, . . . ,ψM}. f

1
and f

2
are

defined as

f
1
(z;P1) = ξ1z+φ◦ ln|z|, (7b)

f
2
(z;P2) = ξ2z+ ξ3e

ψ◦z
(7c)

with φ = [φ1, . . . ,φM ]
T

and ψ = [ψ1, . . . ,ψM ]
T

. Note that ez ,

lnz and |z| are understood elementwise. λ is again chosen such
that λ ∈ [0,∞) as discussed in 3.1.

2Note that it is difficult to proof the existence of such a loss function for

an arbitrary λ and the corresponding estimator θ̂(x;λ).
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Note that FB ⊂ F as all estimators θ̂(x;λ) from (5) are in-

cluded in θ̂(x;P) for ξ1 = ξ2 = 1, ξ3 = 0 and φ1 = · · · = φM = 0.
Therefore, we already know from Theorem 1 that the uniform a pri-
ori MMSE, the MMSE and the MAP estimator are included in this
family.

In the following, we will show that the LINEX loss is also in-
cluded in (7). The LINEX loss is frequently used in Bayesian es-
timation, see e.g. [6, 17]. It rises approximately linear on one side
and exponential on the other. The univariate LINEX loss function

is given by LLINEX(θ, θ̂) = b
“

ea∆−a∆−1
”

where ∆ = θ̂− θ,

a 6= 0 and b > 0. The multivariate LINEX loss is defined as a
straightforward extension and given by [6]

L(θ, θ̂) =
M
X

m=1

bm
“

eam∆m −am∆m−1
”

(8)

where ∆m = θ̂m−θm, am 6= 0 and bm > 0. To calculate the OBE,

we use (4) with ∂L(θ, θ̂)/∂θ̂m = bmam
“

eam∆m −1
”

and finally

obtain

θ̂m = −
1

am
ln

Z

e−amθmp(θm|x)dθm, m= 1, . . . ,M. (9)

The next theorem shows that this estimator is included in the
family F .

Theorem 3. The OBE for the multivariate LINEX loss function (8)
is included in the estimator family F .

Proof. Plugging in the values ξ1 = ξ2 = 0, ξ3 = 1, λ= 1 and ψm =
1/φm = −am for m= 1, . . . ,M into (7) proofs the theorem. �

From Theorem 3 we conclude that the new estimator family F
is more general than FB and also includes estimators with asym-
metric loss functions. Actually, the parametric family of estimators
in (7) is designed as a kind of “superposition” of both FB and the
OBE resulting from the LINEX loss.

5. PRACTICAL CONSIDERATIONS

This section explains the general approach how to obtain the esti-
mator for a given signal model and loss function and also shows

how the estimate θ̂(x;P) can be calculated efficiently for a given
observation x. In the sequel, we will make the following two as-
sumptions:

• The generation of samples (θk,xk)∼ p(θ,x) is manageable,
where p(θ,x) is the joint PDF of θ and x. This is often the case as
p(θ,x) can be written as p(θ,x) = p(x|θ)p(θ), where p(θ) is the a
priori PDF of θ and p(x|θ) is the likelihood PDF. Very often, both
are known: p(θ) from expert knowledge and p(x|θ) through the
signal model.

• The generation of samples θk ∼ p(θ|x) is manageable. This
is not a hard restriction as the MMSE estimator is often calcu-
lated using Markov chain Monte Carlo methods (MCMC) [3, 18].
MCMC allows the generation of samples from the a posteriori dis-
tribution and the MMSE estimator is then simply the average over
all samples. Here, we will use importance sampling where the con-
ditional distribution p(θ|x) is the importance function.
Given the loss function and the signal model, the use of our estima-
tor family for a general estimation problem consists of two steps:

Step 1 – Find the optimal estimator in F
In a first step, we have to find the estimator θ̂(x;P0) ∈ F that has
the smallest Bayes risk for the particular loss function and joint PDF
p(θ,x), i.e. we have to solve the optimization problem

P0 = argmin
P

ZZ

L(θ, θ̂(x;P))p(θ,x)dθdx. (10)

This optimization has only to be carried out once to learn the opti-
mal values of the parameters P . In the appendix B, we give the gra-
dient vector of the Bayes risk in (10) with respect to the parameters

in P . The knowledge of the gradient vector allows to use a gradi-
ent descent method to find the optimal parameter values. Note that
the integration with respect to θ and x can be carried out by a plain
Monte Carlo (MC) integration using samples (θk,xk) ∼ p(θ,x).
The optimization problem (10) becomes then

P0 = argmin
P

1

K1

K1
X

k=1

L(θk, θ̂(xk;P)). (11)

If the generation of samples from p(θ,x) is not directly possible
then importance sampling as discussed below is another possibility
to obtain an accurate approximation of the integral.

Step 2 – Calculate the estimate θ̂(x;P0)
In a second step, we calculate the estimate for a given observation
x. Therefore, we need an efficient method to compute both integrals
in (7a). Note that (7a) can be written as

θ̂(x;P) = f
1

 

Z

f
2
(θ;P2)

p(θ,x)λ
R

p(θ,x)λdθ
dθ;P1

!

= f
1

“

Epλ

h

f
2
(θ;P2)

i

;P1

”

. (12)

We see that we can write the integrals as the expecta-
tion of f

2
(θ;P) with respect to a new conditional density

pλ(θ|x) = p(θ,x)λ/
R

p(θ,x)λdθ. Assuming that we can gen-
erate samples from the a posteriori distribution θk ∼ p(θ|x) =
p(θ,x)/

R

p(θ,x)dθ, we can use importance sampling [3] for (12).
The importance sampling algorithm is as follows: Suppose we want
to calculate E[h(θ)] =

R

h(θ)p(θ)dθ. Then we can use the approx-
imation

E[h(θ)] ≈
K
X

k=1

wkh(θk)

ffi K
X

k=1

wk (13)

where θk are drawn from a trial distribution p̃(θ) and the impor-
tance weights wk are defined as wk = p(θk)/p̃(θk). Note that wk
has only to be known up to a multiplicative constant. Using impor-
tance sampling for our problem, we finally obtain the approximation

θ̂(x;P) ≈ f
1

 

K2
X

k=1

wk f2
(θk;P2)

ffiK2
X

k=1

wk;P1

!

(14)

with p̃(θ) = p(θ,x) and thus wk = p(θk,x)
λ−1. The computa-

tional complexity is hence comparable to that of a MMSE estima-
tion if the MMSE estimator also uses MC integration.

6. EXAMPLE

The example is as follows: Given the signal model x= θ+ z, esti-
mate θ which is uniformly distributed in [0,1] from the observation
xwhere we know that the observation is disturbed by additive Gaus-

sian noise z ∼ N (0,σ2). Furthermore, z and θ are independently
distributed. The considered loss function is the bounded LINEX
(BLINEX) loss introduced in [14]. The univariate BLINEX loss
function is given by

LBLINEX(θ, θ̂) =
LLINEX(θ, θ̂)

1+ρLLINEX(θ, θ̂)
, ρ > 0. (15)

Plugging LLINEX(θ, θ̂) from (8) into (15), we obtain

LBLINEX(θ, θ̂) =
1

ρ

 

1−
1

1+ c(ea(θ̂−θ)−a(θ̂− θ)−1)

!

(16)

with c = ρb. It differs from the usually used loss functions (1) in
two main properties, namely it is (a) asymmetric and (b) bounded:

(a) If a > 0 then the positive error θ̂ > θ results in a larger loss
than the corresponding negative error of the same magnitude. If

a< 0 then negative errors θ̂ < θ have a larger loss. A case where
such an emphasis of negative errors is useful is the dam con-
struction example given in Sec. 1 as underestimating the peak
water level is more severe then overestimating it.
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Figure 1: LINEX and BLINEX loss (ρ= 1, a= 10 and b= 1)

(b) LBLINEX(θ, θ̂) is bounded by 0 and 1/ρ. Such a requirement for
a loss function may occur naturally out of the considered prob-
lem or may be artificially introduced to improve the robustness
of the estimator in the case of outliers.

In our example, we choose ρ= 1, a=10 and b= 1. Fig. 1 shows the
graph of the BLINEX loss function for this choice of parameters.

Furthermore, the noise variance is σ2 = 0.5. Note that both loss
functions in Fig. 1 differ substantially for such a noise variance.

We compare the following five estimators with respect to the
squared error loss (1b) and the BLINEX loss (16):

• MAP estimator: The MAP estimator is in general given by θ̂ =

argmaxθ p(θ|x) with p(θ|x) ∼ e−(x−θ)2/(2σ2)u[0,1](θ) and

u[0,1](θ) is the a priori PDF of θ which is uniformly distributed

in [0,1]. This yields

θ̂MAP =

8

<

:

0 x < 0

x 0 ≤ x≤ 1

1 x > 1

(17)

• MMSE estimator: The MMSE estimator is given by θ̂MMSE =
E[θ|x]. For our signal model, the conditional mean can be cal-
culated analytically and one obtains

θ̂MMSE = x+

r

2

π
σ

e−
x
2

2σ2 − e−
(x−1)2

2σ2

erf
“

x√
2σ

”

− erf
“

x−1√
2σ

” (18)

• OBE under LINEX loss: The OBE for LINEX loss is given by
(9) which can be calculated analytically.

• OBE under BLINEX loss: The optimization problem (3) for this
example can not be carried out analytically and thus (3) has to be
solved for each new observation x individually, either by Monte
Carlo integration or numerical quadrature which we used here.

• Estimator family (7) with optimal parameters: The optimal
parameters are found via the Matlab function fmincon and

are ξ1 ≈ 6.32× 10−1, ξ2 ≈ 2.57× 10−1, ξ3 = 1.58× 10−1,

λ≈ 1.10×101 , φ≈−5.92×10−5 and ψ≈ 1.90. K1 = 5000
samples are used for the Monte Carlo approximation in (11)
and K2 = 5000 samples are drawn from the a posteriori den-
sity p(θ|x) for (14).
Table 1 shows the results averaged over 10000 trials. Clearly,

the MMSE estimator is optimal in terms of the squared error loss as
expected. Similarly, the OBE under BLINEX loss gives the small-
est Bayes risk if the BLINEX loss function is used. The optimal

estimator θ̂(x;P0) from the set F is a good approximation of the
OBE under BLINEX loss as it has a similar Bayes risk. Thus, al-
though the OBE under BLINEX loss itself is not an element of F ,

there is an estimator θ̂(x;P0) in F which gives nearly the same
performance.

7. CONCLUSIONS AND FUTURE WORK

In this paper a family of estimators was proposed for the Bayesian
estimation with non-standard loss functions. This family has the

Squared error loss BLINEX loss

MAP estimator 1.67×10−1 6.58×10−1

MMSE estimator 7.09×10−2 5.85×10−1

OBE under LINEX loss 1.38×10−1 5.78×10−1

Optimal estimator ∈ F 1.06×10−1 5.45×10−1

OBE under BLINEX loss 1.03×10−1 5.43×10−1

Table 1: Comparison of the Bayes risks

advantage that it is parameterized by a small number of variables
which can be determined offline for a particular loss function. We
proofed that the family includes many important estimators known
from the literature, namely MMSE, MAP, and OBE under LINEX
loss which shows that it is quite versatile. The computational com-
plexity of our approach is comparable to that of an MMSE esti-
mation for the same signal model if we assume that Monte Carlo
integration is used for the calculation of the MMSE estimator.

Because of space limitations, we could only give a simple ex-
ample in Sec. 6. We are currently working on a more sophisticated
application for image denoising using the SSIM quality index [7]
that we want to publish in a follow-up paper.

A. PROOFS

Proof of the Lemma. First of all, we would like to point out that the
delta function can be expressed as a limit of the normal distribution,
i.e.

g(θ;a2) =
1

aMπM/2
e−‖θ‖2/a2 a→0

−−−→ δ(θ).

They are equivalent in the sense that f(0) =
R

f(θ)δ(θ)dθ =

lima→0
R

f(θ)g(θ;a2)dθ.
(a) p(θ,x) = δ(θ− θ0):

θ̂(x;λ) = lim
a→0

R

θg(θ− θ0;a
2)λdθ

R

g(θ− θ0;a2)λdθ
= lim
a→0

R

θ g(θ− θ0; a
2

λ )dθ
R

g(θ− θ0;
a2

λ )dθ

= lim
a→0

Z

θ g(θ− θ0;
a2

λ
)dθ = θ0

(b) p(θ,x) = Pδ(θ− θ0)+ (1−P )δ(θ− θ1):

θ̂(x;λ) = lim
a→0

R

θ [Pg(θ− θ0;a
2)+ (1−P )g(θ− θ1,a

2)]λdθ
R

[Pg(θ− θ0;a
2)+ (1−P )g(θ− θ1;a2)]λdθ

= lim
a→0

Pλ

Pλ+(1−P )λ

Z

θ g(θ− θ0;
a2

λ
)dθ

+ lim
a→0

(1−P )λ

Pλ+(1−P )λ

Z

θ g(θ− θ1;
a2

λ
)dθ

=
Pλθ0 +(1−P )λθ1
Pλ+(1−P )λ

where we used the fact that [Pg(θ− θ0;a2) + (1−P )g(θ−

θ1;a2)]λ → Pλg(θ− θ0;a
2)λ + (1−P )λg(θ− θ1;a

2)λ for
a→ 0. �

Proof of Theorem 2. We will proof this theorem by contradiction.

Suppose θ̂(x;λ) has a corresponding loss function L(θ, θ̂) which is
continuously differentiable but not symmetric. Then at least one of
the following two cases has to be true:
(a) There is a θ0 such that

˛

˛

˛

˛

˛

∂L(θ, θ̂)

∂θ̂

˛

˛

˛

˛

˛

˛

˛

˛

˛θ=θ0
θ̂=θ0

6=

˛

˛

˛

˛

˛

∂L(θ, θ̂)

∂θ̂

˛

˛

˛

˛

˛

˛

˛

˛

˛θ=−θ0
θ̂=−θ0

(⋆)

Now, consider the special PDF p(θ,x) = δ(θ− θ0). As θ̂(x;λ)
from (5) holds for all densities, we can directly use the result of
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the Lemma and obtain θ̂(x;λ) = θ0. A necessary condition that

θ̂(x;λ) is the OBE under the loss function L(θ, θ̂) is (4)

∂L(θ, θ̂)

∂θ̂

˛

˛

˛

˛θ=θ0
θ̂=θ0

= 0.

Furthermore, consider the special PDF p(θ,x) = δ(θ + θ0)

which has the OBE θ̂(x;λ) = −θ0. Using again (4), we obtain
the necessary condition

∂L(θ, θ̂)

∂θ̂

˛

˛

˛

˛θ=−θ0
θ̂=−θ0

= 0

which can not be true as we assumed (⋆).
(b) There is a θ0 and θ1 such that

˛

˛

˛

˛

˛

∂L(θ, θ̂)

∂θ̂

˛

˛

˛

˛

˛

˛

˛

˛

˛θ=θ0
θ̂=θ1

6=

˛

˛

˛

˛

˛

∂L(θ, θ̂)

∂θ̂

˛

˛

˛

˛

˛

˛

˛

˛

˛θ=−θ0
θ̂=−θ1

(⋆⋆)

Now consider the special PDF p(θ,x) = Pδ(θ− θ0) + (1−
P )δ(θ− θ1) which, according to the above Lemma, has the

OBE u = θ̂(x;λ) = (Pλθ0 +(1−P )λθ1)/(P
λ+(1−P )λ).

A necessary condition that has to be fulfilled is (4) which yields

P
∂L(θ, θ̂)

∂θ̂

˛

˛

˛

˛θ=θ0
θ̂=u

+ (1 − P )
∂L(θ, θ̂)

∂θ̂

˛

˛

˛

˛θ=θ1
θ̂=u

= 0.

Furthermore, the PDF p(θ,x) =Pδ(θ+θ0)+(1−P )δ(θ+θ1)
results in the OBE −u and the necessary condition (4) is

P
∂L(θ, θ̂)

∂θ̂

˛

˛

˛

˛θ=−θ0
θ̂=−u

+ (1 − P )
∂L(θ, θ̂)

∂θ̂

˛

˛

˛

˛θ=−θ1
θ̂=−u

= 0.

Without loss of generality, we can assume

˛

˛

˛

˛

∂L(θ,θ̂)

∂θ̂

˛

˛

˛

˛

˛

˛

˛

˛θ=θ1
θ̂=θ1

=

˛

˛

˛

˛

∂L(θ,θ̂)

∂θ̂

˛

˛

˛

˛

˛

˛

˛

˛θ=−θ1
θ̂=−θ1

as we can otherwise use (a) and show that the

loss is asymmetric. Taking the limit P → 0 (P > 0), we see that
both necessary conditions contradict the assumption (⋆⋆). �

B. GRADIENT OF THE BAYES RISK

In this section, we derive the gradient of the Bayes risk with respect
to an element γ ∈ P . Using the gradient is advantageous to solve
the optimization problem (10) as gradient descent methods can be
used. Taking the derivative of BR in (10) with respect to γ, we
obtain for the first-order derivative

∂BR

∂γ
=

ZZ

 

∂L(θ,u)

∂u

˛

˛

˛

˛

u=θ̂(x;P)

!T
∂θ̂(x;P)

∂γ
p(θ,x)dθdx.

Using the shorthand notations pλ(θ|x) = p(θ,x)λ/
R

p(θ,x)λdθ

and D =
∂f

1
∂z = ξ1I + diag{φ1/z1, . . . ,φM/zM} evaluated at

z =
R

f
2
(θ,P2)pλ(θ|x)dθ, we obtain

∂θ̂(x;P)

∂ξ1
=

Z

f
2
(θ,P2)pλ(θ|x)dθ

∂θ̂(x;P)

∂ξ2
= D ·

Z

θpλ(θ|x)dθ

∂θ̂(x;P)

∂ξ3
= D ·

Z

eψ◦θ pλ(θ|x)dθ

∂θ̂(x;P)

∂λ
= D ·

„
Z

f
2
(θ;P2) ln(p(θ,x))pλ(θ|x)dθ

−

Z

f
2
(θ;P2)pλ(θ|x)dθ

Z

ln (p(θ,x))pλ(θ|x)dθ

«

∂θ̂(x;P)

∂φ
= diag



ln

˛

˛

˛

˛

Z

f
2
(θ;P2)pλ(θ|x)dθ

˛

˛

˛

˛

ff

∂θ̂(x;P)

∂ψ
= ξ3D ·diag


Z

θ ◦eψ◦θ pλ(θ|x)dθ

ff

Note that all integrals can again be calculated using Monte Carlo
integration, especially importance sampling as was shown in Sec. 5.
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