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Abstract

Bayesian estimation with other loss functions than thedstesh hit-or-miss loss or the quadratic loss
often yields optimal Bayesian estimators (OBE)s that cdy be formulated as optimization problems
and which have to be solved for each new observation. Theibatibn of this paper is to introduce
a new parametric family of estimators to circumvent thisljem. By restricting the estimator to lie
in this family, we split the estimation problem into two martn a first step, we have to find the best
estimator with respect to the Bayes risk for a given nonddathloss function, which has to be done only
once. The second step then calculates the estimate for @mvalisn using importance sampling. The
computational complexity of this second step is therefammpgarable to that of an MMSE estimator if
the MMSE estimator also uses Monte Carlo integration. Weysthe proposed parametric family using

two examples and show that the estimator family gives fohlzogood approximation of the OBE.

Index Terms

Optimal Bayesian estimator, Bayesian estimation, Losstfan, Parametric estimator family

. INTRODUCTION

It is well known that the goal of Bayesian estimation is to fthd estimator that minimizes the Bayes

risk for a given loss function. The loss functidi(@, §) > 0 assigns a loss to the estima@levhen the
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correct value i¥9 and thereby reflects the cost that is connected to a certiimati®n error. It plays a
central role in designing the Bayes estimator and shouldpécation-dependent, i.e. should incorporate
the knowledge of the specific problem that one wants to sd¥€[4]. However, the most often used

loss functions are the hit-or-miss loss and the quadrasis lo

. 1 |6-6||>0
LMAP(G,G) = s §— 0" and (18.)
0 [|0—8]<é
Lyuse(8,0) = (0 —0)"W (0 — §), W pos. def. (1b)

where it is known that the corresponding optimal Bayesidimesors (OBE)s are the MAP and MMSE
estimators [5]. The reason that they are used so widely enafiot their suitability to the problem at
hand but that the corresponding OBEs are well known and,aat for the MAP estimator, are often
computable. They are the maximum and mean of the a postedeosityp(0|x). Powerful methods are
available to calculate the estimafiefrom an observatiorx, ranging from optimization algorithms [5]
and the Expectation-Maximization (EM) algorithm [6] to galing techniques including Markov chain
Monte Carlo (MCMC) methods [7].

In this paper, we will consider Bayesian estimation withestloss functions than those given in (1).

This problem is very important for practical applicatiorssthe following two examples illustrate:

« Consider the problem of constructing a dam [8]. Underedtimgahe peak water level from older
measurements is clearly more serious than overestimataagyi this fact should be reflected in the
choice of the loss functioi(8, §). This example motivates the use of an asymmetric loss fomcti
i.e. L(0,0) # L(—0,—0), and it is obvious that the two loss functions in (1) are ndtesLifor such
an estimation problem.

« Another example that gives rise to other loss functions ttierse given in (1) can be found in
the field of image processing. Traditionally, the mean sediarror is used to compare images and
therefore many algorithms are optimized for this loss fiomc{9]. The problem with the MSE is
that it does not well represent human perception. Imagestwhave a small mean squared error
may still look very different and therefore in [9] it is sugged to use other distance measures. One
is the structural similarity (SSIM) index, which was inttagbd by Wang in [10] and e.g. used in
[11] for the design of linear equalizers. Fig. 1 comparesM&E with the SSIM index and it can
clearly be seen that the SSIM index is a better measure ofasitpithan the MSE with respect to

human perception.
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(a) Original image (b) MSE = 150, SSIM = 0.83 (c) MSE = 150, SSt\0.66

Fig. 1: Comparison of MSE with SSIM for different image operas

((b) = salt and pepper noise, (c) = Gaussian blurring)

A related example that discusses the design of loss furscfionthe reconstruction of images is
given by Rue in [12]. He shows how information about the imagecture can be used to find
a suitable loss function and he proposes the use of MCMC andlaied annealing methods to

calculate the Bayesian estimates.

More examples of Bayesian estimation with non-standard fasctions can also be found in cluster
analysis [13]-[15] and mixture modeling [16], [17].

However, calculating the OBE for many non-standard losstfons is not trivial and can often only be
stated in terms of an optimization problem which has to beexbfor each new observation Therefore,
we propose in this paper a parametric famfiyof estimators which are suited for a large variety of loss
functions but still have a computational complexity congide to the MMSE estimator for the same
problem. Thus, using the best estimatorAnthat has the smallest Bayes risk for a given loss function
will be a good approximation of the OBE. Our parametric fanof estimators can be viewed as a
compromise between the perfect OBE on one side and a (nanjinegression approach on the other. It
trades off performance against computational complexstit will have a larger Bayes risk than the OBE
but will be easier to learn due to the small and fixed numberashmeters compared to a regression
approach.

This paper is organized as follows: First, we review in Sét¢hé Bayesian estimation problem and
introduce the OBE which minimizes the Bayes risk. As the OBI& often not be computed in closed
form, we propose in Sec. Ill and IV two new parametric fansilief estimators. We start in Sec. lll
by considering a basic familyz of estimators, which includes the MMSE and the MAP estimator

This family, however, has the disadvantage that the unierlijoss functions are always symmetric.
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Therefore, we generalize the estimator family in Sec. IVisTdeneralized familyF also includes the
OBE for the linear-exponential (LinEx) loss [18] and is thmsre versatile. In Sec. V we consider the
general approach how to use the estimator family and distsis®omputational complexity. We show
that we can use importance sampling to efficiently computessimate. Finally, two examples in Sec. VI
demonstrate the usefulness of our parametric family toaimate the OBE. The first example studies
our family of estimators for a bounded LinEx loss problem velas the second example considers the
task of speech enhancement using a perceptual relevarfulostion, namely the PESQ measure.

The following notation is used throughout this paperdenotes a column vectaX a matrix and in
particularI the identity matrix. The trace operator, determinant, matanspose and Euclidean norm are
denoted bytr{.}, det{.}, ()7 and||.

elements are given by. Finally, X o Y denotes the elementwise product, also known as Hadamard

, respectivelydiag{x} returns a diagonal matrix whose diagonal

product.

[I. REVIEW OF BAYESIAN ESTIMATION

In this section, we will briefly review the basic elements afyBsian estimation which we will need
throughout this paper. For a more detailed introduction,itfterested reader is referred to [2], [19].

Suppose we have an estimaéilx) that estimates the unknown, random paraméterR* from the
observationx € RY. To evaluate the quality of the estimator, we assign a Ig#s é) > 0 to the error of
estimatingd(x) although the true value i8. If L(6,8) exhibits the relationshif (0, 8) = L(—6, —6)
then it is called symmetrit.

Averaging the loss with respect to the joint probability sién function (PDF)p(0,x) yields an

important characteristic value for an estimator. It is @dlthe Bayes risk (BR) and given by [19]

BR = // L(0,6(x))p(0,x)d0dx. 2)

The optimal Bayesian estimator (OBE) is now that estimatat minimizes the Bayes risk, i.e.

éOBE(X) = arg min BR = arg min //L(O, é(x))p(O,x)dde

0(x) 0(x)
= arg min / L(8,0(x))p(0|x)d6 (3)
0(x)

where we used in the last line of (3) the fact thék) > 0 and therefore it is sufficient to minimize the

inner integral for eackx. Hence,arg ming BR is equivalent to minimizing the loss averaged over the a

1Besides this property, scale invariance [20], [21] and ledmess [22], [23] are other characteristics of the losstiom

that may be desired for practical applications.
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posteriori distribution. Therefore, we immediately seatthll information to find the OBE is included in
the a posteriori density(0|x).

Assuming that the loss functioh (8, 8) is differentiable, we can calculate the first-order deneat
with respect to the estimate and equate it to zero to obtaiecassary conditicnto find the OBE, i.e.

) X _[OL68) o
= [ 16.0000m(61x)d6 = [ Z 0 piopx)d0 Lo @

Solving (4) can often not be done analytically and there®agesian estimation with most loss functions
is difficult. We will thus introduce in the next section a paetric family 7z of estimators that will
transform (3) into an optimization problem to find one par@meThis family is then extended in Sec. IV

to asymmetric loss functions.

[1l. BASIC FAMILY OF ESTIMATORS

The first set of estimators that we consider are all estimaibthe form

B f0p(9,x))‘d0
~ [p(6,x)*d6

and which are parameterized By We call this set thébasic family of estimatorsFi. Thinking of

0(x; \) (5)

p(6,x)* as a new (unnormalized) density, we see that (5) calculagsiean of the conditional density
p(0,x)*/ [ p(6,x)*d6 and therefore looks similar to the MMSE estimator exceptiier modified PDF.
It is reasonable to restrict to positive values, i.e\ € [0, c0). Otherwise we average over a new density
p(0,%)*/ [ p(6,x)*d6 which is inverted in the sense that it has large values atiposiwherep(6|x) is
small, i.e. it emphasizes pointé, x) ¢ RM*+¥ that are not likely to occur and we can expect therefore
a poor performance fok < 0.3

We will now show thatF includes three important estimators, namely the unifornri@ripMMSE
estimator, the MMSE estimator and the MAP estimator. By amif a priori MMSE estimator, we refer
to the estimator where we have no observatioaboutd ¢ © c R and the a priori distributiop(8)
is assumed to be uniform i@. The estimator with the minimum MSE is then the “center ofvgyé of
©,i.e.0 = E[6] = [0p(08)dd = [, 0d0/ [, 1d6 which is well defined if® is bounded. The following

theorem proves that all three estimators areFin

2\We assume here that the parameter space is open. OthelvéiS8BE could also lie on the boundary of the parameter space

and (4) is not necessary anymore.

3For example the los&(6,0) = 1 — Lwar(0, 6) results in seeking the minimum @{6|x) which is related (but in general

not identical) tof(x; \) for A — —oo.

January 21, 2012 DRAFT



Theorem 1. The estimator familyF5 defined in(5) includes the following special cases:

(@) If © ¢ RM is bounded and)(8,x) # 0, thenf(x; \) for A — 0 exists and is equivalent to the
uniform a priori MMSE estimator.

(b) The case\ =1 corresponds to the MMSE estimator.

(c) The case\ — oo corresponds to the MAP estimator.

Proof:

(@) Assuming® to be a bounded set &, we immediately see thditm,_op(8,x)*/ [ p(0,x)*d0 =
const., i.e. it converges pointwise to a uniform distribation ©. Therefore,é(x; 0) calculates the
center of gravity of©® which is equivalent to the a priori MMSE estimator.

(b) Setting\ =1 in (5), we obtainp(0,x)/ | p(6,x)d6 = p(8|x) and thusf (x; 1) = [ 6p(6]x)d6 =
E[68|x], which is the MMSE estimator.

(c) To prove this part, we use a result from Pincus [24]: Giaerontinuous functiorf (6), which attains
a global maximum at exactly one point &, then Pincus showed

J05(6)d6
arg max f(8) = lim CR— (6)

~

Using this theorem, we conclude that ) .., 0(x; \) is the MAP estimator.
[
Although it is interesting to see the relationship of thisibdamily of estimators to other estimators,
we also see that the loss functions associated with {0,1,00} are all symmetric as they are the
hit-or-miss error (1a) and the squared error (1b). In théowdghg, we will prove in Theorem 2 that if
there is a continuously differentiable loss function thegults ind(x; \) for all PDFsp(8,x), then the
loss function has to be symmetfidcor the proof of Theorem 2, we need the following Lemma. The

proofs of the Lemma and Theorem 2 can be found in Appendix A.

Lemma. The estimatod(x; \) for the PDFsp(8,x) = 6(8 — 6,) and p(68,x) = P5(8 — ;) + (1 —
P)5(0—61) is given byd(x; \) = 6y andd(x; \) = (P28 + (1— P)*0,)/(P* + (1— P)*), respectively.

Theorem 2. Let L(8, é) be a continuously differentiable loss function that resirtthe optimal Bayesian

estimatord(x; \) for an arbitrary PDF p(6,x). ThenL(0, ) is symmetric, i.eL(0,6) = L(—6,—6).

“Note that it is difficult to prove the existence of such a lassction for an arbitrarys and corresponding estimaté(x; A).
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From this Theorem, we see that no estimator resulting fromsymmetric, continuously differentiable
loss function is included irFgz. However, we would like to cover such estimation problems ttutheir

practical relevance and hence we have to extEpdThis is done in the next section.

IV. GENERALIZATION TO ASYMMETRIC LOSSFUNCTIONS

In order to extend the basic family of estimatofg given in (5), we will now modify its parametric
form such that the OBE for LinEx loss is also included. By dpitis, we obtain a new family of
estimatorsF which can deal with the important case of asymmetric losstfans.

The LinEx loss is frequently used in Bayesian estimation,esg. [8], [18]. It rises approximately linear
on one side and exponential on the other. The univariate X.IoEs function is given b;LLinEX(H,é) =
b(e®® —aA —1) where A = 6—0,a+0andb > 0. The multivariate LinEx loss is defined as a

straightforward extension and given by [8]
M

L(0,0) = ) by (" — amApy — 1) @)
m=1

where A, = 0, — O, am # 0 andb,, > 0. To calculate the OBE, we use (4) with.(0,8)/00,, =
bmam, (€22 — 1) and finally obtain

A 1
b = ——1In / O p (O x) Ay, m =1, M. ®)

am
Knowing the OBE for LinEx loss, we can now extend our basicifamof estimatorsFz. This will be
done in such a way that the new family of estimat@iss a kind of “superposition” of botl¥z and the
OBE (8). We define this new family of estimators in the follagiway: LetF be the set of estimators

where each estimator has the form

s ([ Ba(6:Pa)p(6,%)d0
0(X7P) - fl < fp(O,X))‘dO 77)1 (9)
and depends on th2)M + 4 parametersP = {\, Py, P2} with Py = {&1,01,...,0p ) and Py =
{&2,&3,71,...,%n}. The functionsf; andf, are defined as
fi(z;P1) = §12 + ¢ o Inz], (10a)
f2(2; Ps) = oz + E3e¥” (10b)

T T
with ¢ = [(bl, e, ¢M] andy = [qpl, ... 7¢M] . Note thate”, In z and|z| are understood elementwise.
A is again chosen such thate [0, c0) as discussed in the Sec. IIl.

First, we would like to note thaFz C F as all estimatord(x; \) from (5) are included irf(x; P)

for§g =6 =1,& =0and¢; =--- = ¢ = 0. Therefore, we already know from Theorem 1 that the
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uniform a priori MMSE, the MMSE and the MAP estimator are urd#d in this family. Furthermore, it is
straightforward to see thak also includes the OBE for LinEx loss as plugging in the valties: & = 0,

& =1, A=1andvy, = 1/¢,, = —a,, for m =1,..., M into (9) results in (8). Thus, we see that
the new estimator family is more general thaf and also includes estimators with asymmetric loss

functions as intended.

V. PRACTICAL CONSIDERATIONS

This section explains the general approach how to obtairgtimator for a given signal model and loss
function and also shows how the estimélies; P) can be calculated efficiently for a given observation
x. In the sequel, we will make the following two assumptions:

« The generation of sampld®;,x;) ~ p(@,x) is manageable, wheng 0, x) is the joint PDF ofo

andx. This is often the case ag6,x) can be written ap(0,x) = p(x|0)p(0), wherep(0) is the
a priori PDF of@ andp(x|0) is the likelihood PDF. Very often, both are knoww(#) from expert
knowledge andg(x|€) through the signal model.

« The generation of samplél, ~ p(0|x) is manageable. This is not a hard restriction as the MMSE
estimator is often calculated using Markov chain Monte €4MCMC) methods [2], [7]. MCMC
allows the approximate generation of correlated samptas fthe a posteriori distribution and the
MMSE estimator is then simply the average over all sampleseHve will use importance sampling

where the conditional distributiop(8|x) is the importance function.

Given the loss function and the signal model, the use of otimator family for a general estimation

problem consists of two steps:

Step 1 — Find the optimal estimator iA
In a first step, we have to find the estima@fx;P;) € F that has the smallest Bayes risk for the

particular loss function and joint PD§{0, x), i.e. we have to solve the optimization problem

Py = argmin / / (8, 6(x: P))p(6, x)d6dx. (11)

This optimization has only to be carried out once to learndp@mal values of the parametefa In
the Appendix B, we give the gradient vector of the Bayes nisklil) with respect to the parameters in
P. The knowledge of the gradient vector allows to use a gradiescent method to find the optimal
parameter values. As the Bayes risk is in general a multilnod&tion with respect tdP, the gradient

descent algorithm should be restarted several times fréi@relt initial points.
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The integration with respect t8 andx can be carried out by a plain Monte Carlo (MC) integration

using sample$6y., xx) ~ p(0,x). The optimization problem (11) becomes then

K,
1 A
Py = arg min el ; L(O,0(xk;P)). (12)
If the generation of samples frop(@, x) is not directly possible, then importance sampling as dised

below is another possibility to obtain an accurate apprexiom of the integral.

Step 2 — Calculate the estimafiéx; P;)
In a second step, we calculate the estimate for a given odtdemx. Therefore, we need an efficient

method to compute both integrals in (9). Note that (9) can bidem as

<)
6(x;P) =fi </ f2(9;732)%d9;771>

= f1 (Ep, [f2(0;P2)];P1) . (13)

We see that we can write the integrals as the expectatidi(6fP) with respect to a new conditional
densityp, (0|x) = p(8,x)*/ [ p(6,x)*d6. Assuming that we can generate samples from the a posteriori
distribution 8, ~ p(8|x) = p(0,x)/ [ p(0,x)dl, we can use importance sampling [7] for (13).
The importance sampling algorithm is as follows: Supposeveset to calculatés [1(0)] = [ h(0)p(0)de.
Then we can use the approximation
K
> wih(6y)
k=1
E[h(9)] ~ = (14)
> Wk
k=1
where@,, are drawn from a trial distributiop(@) and the importance weights, are defined asy, =
p(01)/p(0%). Note thatw, has only to be known up to a multiplicative constant in (143irlg importance
sampling for our problem, we finally obtain the approximatio
K>
> wi, £2(0k; Po)
6(x;P) ~ f; | E=L ;P (15)

K,
> Wk
k=1

with 5(8) = p(0,x) and thuswy, = p(8x,x)*~!. The computational complexity is hence comparable to

that of an MMSE estimation if the MMSE estimator also uses Mt@gration.
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VI. EXAMPLES

A. Example 1: BLIinEx Loss

The first example is as follows: Given the signal modek 6 + z, we want to estimaté which is
uniformly distributed in[0, 1] from the observation: where we know that the observation is perturbed
by additive Gaussian noise ~ N(0,0?). Furthermore, we assume thatand § are independently
distributed. The considered loss function is the boundetEki(BLinEXx) loss introduced in [23]. The
univariate BLInEXx loss function is given by

Liinex(8,0)
1+ pLLinEx(ea 9)

PIuggingLLinEx(H,é) from (7) into (16), we obtain

1 1
Lgtinex(0,0) = ; (1 N 1+ C(ea(é—G) — a(é —0)— 1)> +

with ¢ = pb. It differs from the usually used loss functions (1) in twoimaroperties, namely it is (a)

Lpinex(0,0) = , p>0. (16)

asymmetric and (b) bounded:

(@) If « > 0 then the positive errof > 6 results in a larger loss than the corresponding negative
error of the same magnitude. df< 0 then negative erroré < 6 have a larger loss. A case where
such an emphasis of negative errors is useful is the damroatish example given in Sec. | as
underestimating the peak water level is more severe tharestmating it.

(b) LBLinEX(H,é) is bounded by 0 and/p. Such a requirement for a loss function may occur naturally
out of the considered problem or may be introduced artificitd improve the robustness of the
estimator in the case of outliers.

In our example, we choose = 0.5, a = 10 andb = 1.5 Fig. 2 shows the graph of the BLInEx loss

function for this choice of parameters. Furthermore, thisaeariance isr? = 0.25.

We compare the following five estimators with respect to theased error loss (1b) and the BLIinEXx

loss (17):

« MAP estimator The MAP estimator is in general given Wy = arg maxg p(f|z) with p(6|z) ~
e~ (@=07/27%) 4 11(0) anduyg 1)(9) is the a priori PDF of which is uniformly distributed ir{0, 1].

*We choose these parameter values in order to achieve tloeviot] two effects: First, we want to study an asymmetric loss

function and therefore: has to be large. Second, we want a loss function which is lmehd therefore different from the

LinEx loss. To see this effect, we chooge= 0.5.
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——— BLinEXx loss : 7
— — = LinEXx loss : 7

Fig. 2: LinEx and BLInEx loss{ = 0.5, a = 10 andb = 1)

This yields
0 <0
Ovap = z 0<z<1 (18)
1 z>1

« MMSE estimatar The MMSE estimator is given b@MMSE = FE[f|z]. For our signal model, the

conditional mean can be calculated analytically and onaiobt

z2 (z—1)2
~ 2 T 202 — T 202
Ommse = = + \/;U ° ‘ - (19)
ert (757) — et (377)
« OBE for LinEx loss The OBE for LinEx loss is given by (8) which can be calculasethlytically.
It is given by
14+ac?—z ac’—zx
. w? 1 erf ( =5—=) —erf —
OoBE Linex = ¢ — —— — — log ( V2 > ( = ) (20)

2 a -1
erf (ﬁ) — erf (%>
« OBE for BLIinEx loss The optimization problem (3) for this example can not beriedr out
analytically and thus (3) has to be solved for each new observz individually, either by
Monte Carlo integration or numerical quadrature. For omuations, we used the Matlab functions

f m nunc andquad to solve (3).
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Estimator Mean Squared error loss Mean BLIinEx loss

MAP estimator 1.2%107* 1.02x10°
MMSE estimator 6.281072 9.03x107!
OBE for LinEx loss 1.2%107* 8.70x107*
Optimal estimatore F 8.16x1072 8.21x107!
OBE for BLInEx loss 8.761072 8.12x107*

TABLE |: Comparison of the Bayes risks

« Estimator family(9) with optimal parametersThe optimal parameters are found via the Matlab
functionf m ncon using 50 random start points for the gradient descent. Thed@arameters are
£ ~6.77 x 1071, &~ 4.03 x 1071, &3 = 1.33 x 1071, A~ 8.31, ¢ ~ 4.02 x 1073 andy ~ 1.91.
K; = 5000 samples are used for the Monte Carlo approximation in (18)f&n = 5000 samples
are drawn from the a posteriori densjiyf|x) for (15) using the sampling method proposed in [25].
The values fork; and Ky were found by simulations to ensure statistical stablelt®sd the MC
integral approximations.

Table | shows the results averaged ov@000 trials. Clearly, the MMSE estimator is optimal in terms
of the squared error loss as expected. Similarly, the OBEHerBLInEX loss gives the smallest Bayes
risk if the BLInEx loss function is used. The optimal estiorad(x;P) from the setF is a good
approximation of the OBE for the BLIinEx loss as it has a simBayes risk. Thus, although the OBE
for the BLInEx loss itself is not an element &, there is an estimatdd(x; P,) in F which gives nearly
the same performance.

In order to study the influence of the noise variance on theulsition results, we rerun the first
experiment with varying-? values. Fig. 3 shows the simulation results and it can beladad that the
relative performance ol (x; Py) with respect to the OBE for BLIinEx loss is almost constant.

Finally, the run times to compute the estimates on a standiesétop computer are given in Table I
in order to compare the computational costs of the diffeegtroaches. It can be observed that the run
time of the OBE for BLinEx loss is roughly ten times larger as dur estimator family which justifies
to use the approximation given by (15) rather than the OBE&fitfNote that the computation of the
estimator family according to (15) consists of two stepsst-iwe have to sample from the a posteriori
distribution which in our case is a truncated Gaussian tensle used the sampling algorithm proposed

by Robert in [25] for this step. Second, we have to use impogasampling as shown in (15) to find the

January 21, 2012 DRAFT



o
)

Mean squared error loss
o
2

0.05r

0.15¢

=
N

—*— MAP estimator
— © — MMSE estimator
—%— - OBE for BLInEx loss

— - — Optimal estimatore F
—<+— OBE for LinEx loss

i

o © I

© © kR
.

Mean BLIinEXx loss
o o
o ~

o
n

0.3§

—— MAP estimator

— © — MMSE estimator
—%— OBE for BLIinEx loss
— - — Optimal estimatorc F
—<+— OBE for LinEx loss

0.2

10 10

Noise variancer?

10"
Noise variancer?

Fig. 3: Squared error and BLIinEx loss for a varying noisearazeo?

Estimator

Run time

MAP estimator

< 1x107% sec.

MMSE estimator

< 1x107! sec.

OBE for LinEx loss

< 1x107! sec.

Optimal estimatore F

2.3x10' sec.

OBE for BLIinEx loss

3.%10? sec.

TABLE II: Comparison of the run times for0 000 trials

10

13

estimate. The run time for the first step2$ seconds and for the second stegeconds which results

in the 23 seconds that are given in Table Il. These numbers show that aidhe run time is spent on

computing samples from the a posteriori density.

B. Example 2: Speech Enhancement

The second example which we consider is the enhancement isfaateld speech signal. The goal is

to suppress an unwanted noise signal while leaving the bBpgeecindistorted as possible, see e.g. [26],

[27].

In the time domain, the speech enhancement problem can berwas

January

21, 2012

z(n) = s(n) + z(n),

(21)
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where s(n) is the original (clean) speech signal at time instancehich is distorted by noise(n) to
result in the observed signal(n). One solution for this problem is the traditional approa€isivort-time
spectral attenuatior(STSA) which was introduced by [28], [29] and extended iredatork [30]-[32].
While [28] is based on the method spectral subtractionthe other papers use a more statistically
motivated approach by introducing a suitable loss funcéind signal model for each frequency bin. The
corresponding OBE is then used to perform the STSA operation

In the following, we will state the speech enhancement mnobin the frequency domain where we
assume a Gaussian signal model. All necessary element®towsfamily of estimators from (9) are
derived and this estimator is then compared to the OBE.

1) Problem Formulation and Solution Approachising the short-time Fourier transform of (21), the

signal model can be written in the frequency domain as
Xki = Ski+ Zkis (22)

where X, ; = Xmeﬂ’k’i, Ski = Sm.ejm,i and Z;,; are thekth spectral component of the noisy signal
x(n), clean speeck(n) and noisez(n) in theith frame. The frequency indexranges fronD to K — 1

where K is the FFT length. In STSA, the speech enhancement probleohed by using
Ski = Skl (23)

i.e. the amplitudeY}, ; of the noisy spectral compone#, ; is replaced by the estima&,i = Sk,i(XM).
For convenience, we will drop the dependence of the spectralponents on the frame indéxn the
following.

Using the Gaussian mode}, = Spe??* ~ CN (0,02 (k)), i.e. Sy is complex Gaussigrwe know that
the PDF ofS; and ¢y is given by

27 o2 koe o5 8k2070§¢k<2ﬂ—
P(Sk, ) = § T2 7 -

0 otherwise

i.e. S follows a Rayleighdistribution, ¢y, is uniformly distributed or0, 27) and they are independent

of each other. Assuming furthermo®, ~ CN'(0,02(k)) and Z; is independent of}, the a posteriori
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densityp(Si| Xx) for S > 0 is given by
27

P(SkXy) = @ / DXk ISk, 61)p(Sk. 1) d
0
_ S0 (k) + 03 (k)) {_a,z(k) Lol k) o2 (k) Xz}
702 (k)02 (k) SZ(B)o2(k) F T oZ(R)(02(h) + o2(k))
2
x / exp { 2;’“(:)’“ cos (¢r — ek)} dor.. (25)
0 z

Introducing themodified Bessel function of the first kind anth order I,,(z) which has the integral

representation [33]

21
() = 5- / cos(Bn) exp {z cos(8)} dB, (26)
0

and using the shorthand notations= 02(19)(023(1(913102(/6)))(1@2 and)\,;1 = % we can finally write

the a posteriori density(Sy| X)) as

S S? [ 1
p(Sk|Xk) = 2>\—l]: exp {—/\—i - Uk} IO (2Sk Uk/\k1> . (27)

This density is well known in the literature and shows tSatgiven the observatioX;, follows a Rice
distribution[34]. It is interesting to note that(Sy|Xx) only depends ort}, and thereforeS, = S‘k()(k).
To derive the OBE in the next Section, we will need to caleauthie momentd? [S;"*| X}]. Interestingly,

they can be given analytically using ti@mmer functionM (a, b, z) as shown in [30] and they are

E[SPX)] = A1 (% + 1) M (—% 1, —vk> (28)

for all m > —2 wherel'(z) = f0°° t*~le~tdt is the Gamma functionEq. (28) results from the identities
[33, 11.4.28] and [33, 13.1.27].

2) Loss Function and Corresponding OBHn the literature, many different loss functions were
proposed to perform STSA speech enhancement. The firstagpin [29] was to use the squared loss
function L(Sy, Si) = (S, — Si,)? which results in theVIMSE-STS/algorithm. Later, other loss functions
were proposed in [30]-[32] which show a better performanith respect to perceptual motivated quality
measures, e.g. thperceptual evaluation of speech qualfiyESQ) measure [35]. In [36], these loss

functions were combined into a family of loss functions of florm

B &B\?2
L(Sk, S) = (Sk _Sk> : (29)

Sk
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This loss function was later generalized in [37] to includesre more proposed loss functions. The
corresponding OBE for (29) can easily be found by using (getoer withaL/aSk = —2555‘1(85 -
8P)/S2* and is given by

s B—2a % EX
{S’“ P(Sk| Xy )dSk E [Sg—zapgk} s
Sk = = (30)

< e taiv
[ 8;%p(Sk| X )dSi E [S, 2| %]
0

3) Simulation Resultsin the following, we will compare the OBE for the loss functi@9) with the
best estimator from the generalized family (9). Two experits are conducted: In the first experiment,
we find the best estimator iff with respect to the loss function (29) fer = 0.5 and 5 = 1. This
parameter setup was shown in [36] to result in an STSA algaoritvith the best PESQ value, which is
called Weighted Euclidean STSA (WE-STSA)contrast, the second experiment optimizes directly on
the PESQ measure.

Experiment 1: Fitting of the estimator family to WE-STSA

The following three estimators are considered:

o Minimum Mean-Squared Error STSA (MMSE-STSe MMSE-STSA estimator results from the
special choicex =0 and =1 in (29). The corresponding OBE is given by [29]

s=eisin= Yt [0 oo (B) v ()] o

where we used the identities [33, 13.1.27] and [33, 13.316PB) form = 1.
« Weighted Euclidean (WE-STSAhe WE-STSA estimator is the OBE that corresponds to théceho

a=0.5andg = 1. It is given by [31]

~ _ Uk/2
&=EMWMV=J¥§@5 (32)

2
where we used the identity/ (3,1, z) = ¢*/2I, (3) in (28).

« Estimator Family To learn the optimal parametef®, K; = 5000 samples from the joint PDF
p(Sk, X) and Ko = 5000 samples from the a posteriori PQES | X)) are drawn using a uniform
(hyper-)prior distribution foro?(k) ando2(k). They were chosen to be uniformly distributed with
o2(k) ~U(1072,10°) ando?(k) ~ U(10712,10%).

We used ten female and ten male speakers from the TIMIT dsg¢alhich resulted in a total df4
utterances. The noise was assumed to be white Gaussian \BiNRaof 10dB. The short-time Fourier

transform was computed using a Hamming window of lergjttns and an overlap di0% as in [36].

The noise variance?(k) was estimated from noise-only segments where those segment found by
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a voice activity detector (VAD)o2(k) is estimated from the decision-directed approach as peapus
[29].

The results are shown in Table lll. Beside the MMSE loss aedWHE loss, we also give the results
with respect to the PESQ measure. It can take on values betitégbad) and 4.5” (excellent) and
was shown to be a good objective quality measure for speelchneement [38]. From the results we
see that WE-STSA gives the best results with respect to ttf&PBeasure which was already observed
in [36]. Furthermore, we also see that the best estimaton ffois a good approximation of the OBE
for WE loss. It gives a better PESQ measure than the MMSE-Sdishtherefore we could adapt the
parametric family to the WE loss function. It is interestittggnote that the best estimator fraf has a
smaller WE loss than the OBE for this loss function. This stdrom the fact that estimates of (k)
andc?(k) were used during the speech enhancement which influenceetfoeemance of the estimators.

Experiment 2: Fitting of the estimator family to PESQ
Instead of using the WE loss as for Experiment 1, we also stutiie performance of the estimator
family F if the PESQ measure is directly used as loss function, i.eramen the first experiment with
the same setup but this time we search the best estimaitiivat yields the maximum PESQ value. We
splitted thel44 files into two sets, a training set consisting of one male amg female speaker, and a
disjoint test set which contains the remainihg files. The optimization problem (12) was solved using
Matlab’'s f m nsear ch procedure from 50 different randomly chosen starting moint

Table IV shows the results for this new setup. It can be seahthie estimator which is adapted to
the PESQ loss has an improved mean PESQ value8af compared to the estimator we found in the
first experiment which had a PESQ loss2080. A difference 0f0.07 in the PESQ measure corresponds
roughly to aldB difference in SNR and hence, we can conclude that the festichator is capable of
fitting to the PESQ loss function. Furthermore, it perfornsoaslightly better than WE-STSA on the

142 utterances of the test set.

VIlI. CONCLUSIONS

In this paper a family of estimators was proposed for the Bayeestimation with non-standard loss
functions. This family has the advantage that it is paranmtd by a small number of variables which can
be determined offline for a particular loss function. We mabthat the family includes many important
estimators known from the literature, namely MMSE, MAP, &BE for the LinEx loss which shows
that it is quite versatile. The computational complexity afr approach is comparable to that of an

MMSE estimation for the same signal model if we assume thatt®l&arlo integration is used for the
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MM SE loss WE loss PESQ
(a=0,8=1) (=05 8=1)

Noisy speech signal 4.13102 8.34x10° 2.26
OBE foraa=0,8=1
1.47x1072 1.02x10° 2.65
(MMSE-STSA)
OBE fora=0.5, =1
2.02x1072 2.01x107" 2.86
(WE-STSA)
Optimal estimator inF
2.10x1072 1.53x107! 2.80

(WE Loss)

TABLE IlI: Experiment 1: Performance of the STSA estimators

MM SE loss WE loss PESQ
(a=0,8=1) (=05 8=1)

Noisy speech signal 4.1502 8.28x10° 2.26
OBE foraa=0,8=1
1.48x107? 1.01x10° 2.65
(MMSE-STSA)
OBE fora=0.5, =1
2.04x1072 1.99x107! 2.85
(WE-STSA)
Optimal estimator inF
2.09x1072 1.52x107! 2.80
(for WE Loss)
Optimal estimator inF
1.57x107! 1.36x107! 2.87

(for PESQ)

TABLE IV: Experiment 2: Performance of the STSA estimatonstbe test set

calculation of the MMSE estimator. Please note that a MAW&X implementation of the estimator

family is available online [39].
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APPENDIXA

PROOFS

Proof of the Lemma:First of all, we would like to point out that the delta funatican be expressed
as a limit of the normal distribution, i.e.

1

a™ T

They are equivalent in the sense thd0) = [ £(0)5(0)d0 = lim,—o [ f(0)g(8;a?)d6. Using this

g(0;a?) = 26—”9”2/@2 a—0, 5().

relationship, we can now prove the lemma.
(@) p(0,x) =6(6 — 0):

) — 09; a®)* 00(0 — 0,: 22)dO
0(x;\) = lim [ 6g(6 — 6¢;a*)*d6 — i [ 6g( 0l 2)\)
a—0 fg(e — Bo; a2)>\d0 a—0 fg(g — 0y; %)d9

a?

= lim [ 6g(0 — 6y;

lim )6 = 6,

(b) p(0,x) = P5(6 — 6o) + (1 — P)5(0 — 61):
5 J 6[Pg(8 — 8o;a°) + (1 — P)g(0 — 8:,a°)]"d6

B(x: A) = li
O = 1 T 1Pg(0 — 80:0) + (1 — P)g(0 — 0:2)>d0
. P)\ CL2
= lim oy | 0910 00: o

, (1-pP) / a?
T B Py ) 090 O

Py + (1 - P)6,
T P +(1-PY

where we used the fact tha®Pg(0 — 6¢; a?) + (1 — P)g(8 — 01;a2)]* — P g(0 — 0p;a*)* + (1 —
P) g(0 — 01;a%) for 8, # 6, anda — 0.

[ |
Proof of Theorem 2: We will prove this theorem by contradiction. Suppcéa(ec; A) has a corre-
sponding loss functiod. (6, é) which is continuously differentiable but not symmetric.efhat least one

of the following two cases has to be true:

(@) There is &, such that X
0L(8,0)

~

0=6, ‘ 06 0=—6,
9:00 9:—90

‘aL(o, 6)
Bl

(%)

Consider the special PDK#,x) = 6(8 — 6,). As 8(x; \) from (5) holds for all densities, we can

directly use the result of the Lemma and obt8ifx; \) = 6,. A necessary condition that(x; \)
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is the OBE for the loss functiof(8, 6) is (4)
dL(0,8)

= =0.
00

00,
0:00

Furthermore, consider the special PPf,x) = §(0 + 6,) which has the OBE(x; \) = —6.

Using again (4), we obtain the necessary condition

OL(6,0) o
89 0=—0,
é:—oo
which can not be true as we assumej (
(b) There is ady and @, such that
‘ 8L(9A, 0) ‘ 8L(9A, 0) ' (%)
é:@l é:—Gl

Consider the special PDK60,x) = Pd(0 — 6y) + (1 — P)6(6 — 61) which, according to the above
Lemma, has the OBl = 6(x; \) = (P*8,+ (1 — P)*8,)/(P*+ (1— P)*). A necessary condition
that has to be fulfilled is (4) which yields

IL(8.6)

OL(0,0
< +(1—P)7( .6) =
00

0=0, 90 |o=0,
0=u 6=u

Furthermore, the PDI(0,x) = P4(6 + 0y) + (1 — P)5(6 + 6;) results in the OBE-u and the

necessary condition (4) is

dL(6,6 OL(6,0
P# +(1 - P)# =0.
00 |e=—a, 00  |o=—a,
6=—u 6=—u
Without loss of generality, we can assu (9.0) = (M\ as we can otherwise use
00 6=6, 00 0=—0,

9:01 . 9:—9]
(a) and show that the loss is asymmetric. Taking the lifhit> 0 (P > 0), we see that both necessary
conditions contradict the assumptios( asu — 6; and (=) is also true in a neighbourhood of

(89, 01) as the loss is continuously differentiable.

APPENDIX B

GRADIENT OF THE BAYES RISK

In this section, we derive the gradient of the Bayes risk wihpect to an element € P. Using

the gradient is advantageous to solve the optimizationlenolfll) as gradient descent methods can be
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used. Taking the derivative of BR in (11) with respecttowe obtain for the first-order derivative

T 4
8BR // OL(6,u) 0 u) aG(X;P)p(G,x)dde.
u=0(x;P)

Oy
Using the shorthand notatiopg(0|x) = p(e,x))‘/ [p(8,x)*d0 andD = % = ¢ T+diag{¢1/z1,. .., ém/2m}
evaluated at = [ £,(6, P2)p,(0]x)d6, we obtain
80(}( P)
ER

90(x;P)
T —D/0p>\(0]x)d0

80 (x;P)
=D [ e¥p,\(6
T 0& / (Blx)d8

% =D </ £2(6; P2) In (p(8, %)) pa(0]x)d0

/ £,(6, P2)pa(0]%)d6

- [ (6 Pas01x9a0 [ 10606, 11 (01100

3‘7%7’) _ diag {m /f2(0; Pg)px(9|x)d0'}

00(x; P .
% = &D diag {/ 0o ewoopx(0|x)d0}

Note that all integrals can again be calculated using MoraeoCintegration, especially importance

sampling as was shown in Sec. V.
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