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Abstract—In this paper, we present a fusion of stereo camera
and radar targets to significantly improve the tracking of
pedestrians indoors especially suited for surveillance and security
applications. Indoor environments pose bigger challenges for
pedestrian tracking compared to outdoor environments. This
makes pedestrian tracking with only a camera or radar difficult.
In this work, we demonstrate that in some preliminary experi-
ments our fusion system increases the multiple object tracking
accuracy (MOTA) from -16.7% and 38.0% for camera or radar
only tracking to 90.9% using a fusion of both. Furthermore,
the proposed fusion system achieves a multiple object tracking
precision (MOTP3D) of 90.3% compared to 83.4% and 81.8%
obtained via camera and radar only tracking, respectively.

I. INTRODUCTION

Camera and radar fusion for object tracking has been
intensively studied for decades [1], [2]. It is used in a wide
range of applications such as topographic map creation, driver
assistance and autonomous driving [3], [4]. In automotive ap-
plications, for example, the objects to be detected and tracked
are mostly vehicles. In recent years, pedestrian detection and
tracking on streets for an increased driving safety in urban
environments has also attracted much attention. In comparison
to vehicles, the radar detection and tracking of pedestrians
suffers from additional difficulties: a low radar cross section
(RCS), unpredictable reflection centers depending on clothes
and diverse velocities of different body parts (e.g. swinging
arms) of the same object (pedestrian) [5]–[9].

In this paper, we focus on a fusion application which has
rarely been addressed in the literature, pedestrian detection
and tracking in indoor environments for surveillance and
security systems. These systems work 24 hours a day and 7
days a week and shall provide an automatic, highly sensitive
and reliable object detection and tracking. In comparison to
pedestrian tracking on streets, the indoor environment poses
additional challenges. The occlusion of a pedestrian by various
items and installations in a room or by other pedestrians
in a crowded situation is one such challenge. This makes
both camera and radar detection and tracking difficult. Other
challenges include the rich radar reflections on ceilings, floors,
walls and other items as well as installations in a room with
an even higher RCS than the pedestrians.

The aim of this paper is to study this situation and to
compare the camera and radar only tracking with that of
sensor fusion. For this purpose, we use an experimental system
consisting of a stereo camera and a multiple input multiple out-
put (MIMO) frequency modulated continuous wave (FMCW)
radar.

II. SYSTEM OVERVIEW

Fig. 1 shows the overall pedestrian detection and tracking
system which is assumed to be installed on a fixed base. It

consists of a stereo camera providing rectified stereo images
and a MIMO-FMCW radar delivering radar baseband signals.
They are processed by an image processing chain (Section III)
and a radar signal processing chain (Section IV) separately.
Both chains return so-called targets which are then combined
and tracked in a heterogeneous sensor fusion unit, which
finally return objects and their trajectories over time. The
sensor fusion is addressed in Section V, with quantitative
performance evaluation results reported in Section VI.
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Fig. 1. Overview of the fusion system for indoor detection and tracking of
pedestrians.

Both the camera and radar can make detections from
pedestrians, upper bodies and other moving foreground items
in the case of camera and radar reflections in the case of radar.
The basic assumption here is that a pedestrian is by definition
moving, at least in a long timescale in comparison to the
stationary background. Based on the spatial coordinates, the
detections can be clustered separately in the camera and radar
signal processing chains. Each cluster is called a target. This
clustering is necessary because at a close range, a pedestrian is
not a point target and the pedestrian size is often larger than the
range resolution of the radar. The clustering combines radar
detections of the same pedestrian from different range bins. A
second advantage of the clustering is to provide both a mean
and covariance of the position of the targets before a Kalman
filter based fusion and tracking.

A big difference to vehicle or aircraft tracking is that the
radar Doppler (radial velocity) of the detections is less useful
for clustering of pedestrian detections because different body
parts (e.g. moving arms and legs) can show totally different
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velocities [5]–[9]. In this paper, we first decided to completely
ignore the radar velocity estimates in both clustering and
tracking. The motivation is to investigate whether a simpler
radar (e.g. pulse radar without Doppler estimate) is suitable for
such an indoor pedestrian tracking system. In a future study,
we will compare the tracking performance with and without
the Doppler estimate.

After the clustering of detections, the camera and radar
share a common spatial domain for fusion of targets and
tracking. This happens in a heterogeneous way because the
image and radar targets are temporally asynchronous. This
simplifies the realization of the pedestrian tracking system by
using off-the-shelf sensors.

The coordinate system used in this paper consists of x in
horizontal dimension, y in height and z in depth.

III. IMAGE PROCESSING

Fig. 2 provides an overview about the image pro-
cessing chain starting with the rectified stereo camera
images IIIL and IIIR as input. They are captured with a
BumbleBee2 stereo camera where the left camera center and
right camera center are horizontally aligned with a distance
of 12 cm. We assume a simple pinhole camera model. The
camera is calibrated in both the intrinsic and extrinsic param-
eters.

In the following, various image processing steps are briefly
described.
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Fig. 2. Overview of the image processing chain.

A. Human Upper Body Detection
In indoor environments with many installations and items,

in particular in a crowded situation with many pedestrians,
occlusion is one of the major difficulties, for both the camera
and the radar. In automotive pedestrian tracking applications,
the conventional approach is to detect the pedestrian silhou-
ette. This is no longer possible in indoor environments. The
occlusion statistics in [10] show that the lower body is the
most occluded body part. This implies that the detection of
the upper body is more robust against occlusion than a human
silhouette detection. We detect human upper bodies in the
left image IIIL by using a method based on the Viola-Jones
algorithm [11]. It is a supervised learning algorithm and uses
histogram of oriented gradients (HOG) features obtained from

gray images. Front, back, left and right views of real and
simulated pedestrians are used as training samples to train
a classifier for each view, respectively. The human upper
body detection is important when a pedestrian is standing still
and there is no movement in the image because the parallel
detection of moving foreground objects (next subsection) will
fail in this case. The upper body detection provides bounding
boxes including xi and yi position as well as width and height.
The bounding box properties for all detected human upper
bodies are stacked into the human upper body bounding box
matrix H for further processing.

Fig. 3(a) shows 2 detected (green) upper bodies in one
image in a scene where one pedestrian is walking away from
the camera. One detection is from the back view classifier and
is thus correct, while the second one is a false detection from
the front view classifier, because the front and back views of
an upper body look quite similar. We tolerate this situation in
our work because a miss detection is far more serious than
two similar detections which will be easily merged at a later
stage.

B. Foreground Detection
The upper body detection is mostly successful, but fails

in certain situations such as when the upper body itself is
occluded, a pedestrian enters or leaves the field-of-view (FoV)
or when the pedestrian is too far away from the camera to
provide enough detail for a successful upper body detection.
For this reason, we apply a parallel detection of moving
foreground objects to the left image IIIL.

The foreground detection relies on a short-term and a long-
term model which are both essentially background subtraction
algorithms [12]. Those two models have different adaptation
speeds. One with a low adaptation speed and the other with a
high adaptation speed. The final foreground detection matrix F
is found as the intersection of the foreground areas in both
models.

Fig. 3(b) shows 3 detected moving foreground areas as the
pedestrian is walking away from the camera: the left arm, the
right arm, and the left foot. Note that the right foot is not
moving and hence is not detected.

C. Disparity Estimation
A third parallel step is the disparity estimation using the left

and right image to obtain depth information about the different
detections. The disparity describes the horizontal pixel shift
between both rectified images. With increasing distance of
objects from the camera the disparity decreases. We use the
block matching technique for this task, which computes the
disparity by comparing the sum of absolute difference (SAD)
of each block of pixels in the images [13].

Fig. 3(b) illustrates the estimated disparity image matrix D
for the scene in Fig. 3(a). It is a grayscale depth map for the
left image where brighter pixels correspond to closer points.
Note that due to non-overlapping FoVs of the left and right
camera, the disparity image matrix D has a blind area on
the left side as highlighted which does not provide any depth
information.

D. Scene Reconstruction
With knowledge about the intrinsic camera calibration pa-

rameters of the left and right camera, the extrinsic calibration
parameters between both of them and the disparity image
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Fig. 3. (a) Results of upper body and moving foreground object detection
from the left camera image. (b) Disparity map estimated from the left and
right image.

matrix D, we are now able to compute the 3D scene de-
scribed by a point cloud matrix S(x, y, z). In order to avoid
detections due to light reflections, we remove all points from
S(x, y, z) with a height y > 2.5 m or y < 0.5 m representing
the ceiling and floor. Since we assume upright walking and
standing pedestrians, for each point in all bounding boxes of
detected upper bodies in H and in all foreground detections
in F, we extract the 3D point position and ignore the height
information y to form the 2D point cloud matrix SC(x, z).
This means, each point cloud matrix SC contains the 2D
coordinates (x, z) of relevant points from the detected upper
bodies and foreground objects for each left image.

E. Clustering
As illustrated in Fig. 1, we use clustering to combine

detections which are spatially close to each other. Each
cluster is called a target and is characterized by a 2D
mean position vector pC

k =
[
xC
k , z

C
k

]T
and a 2× 2 covariance

matrix CC
k , 1 ≤ k ≤ KC . KC is the number of found clusters

for each camera image. We use the density-based spatial
clustering of applications with noise (DBSCAN) method from
[14] for clustering. It is a density-based clustering with a
neighborhood radius parameter ε and a minimum-number-of-

neighbors parameter cmin to create a cluster. We use ε = 0.2
and cmin = 100.

Fig. 6(a) shows the clustering result for the scenario in
Fig. 3(a). In this case, DBSCAN finds two targets in the image.
The first target with the mean lateral position x ≈ 0.1 m
and the mean depth z ≈ 5.3 m is a true target (pedestrian).
The second target (pC

2 ,C
C
2 ) is a ghost target and appears due

to the large bounding box of upper body detection which
also contains many pixels from the wall beyond 10 m, see
Fig. 3(a).

IV. RADAR SIGNAL PROCESSING

Fig. 4 shows an overview about the radar signal processing
chain starting with the baseband signal Φ captured by a
MIMO-FMCW radar.

The experimental radar system operates at the carrier fre-
quency of 76.5 GHz with a bandwidth B = 900 MHz. It uses
a FMCW modulation. Each measurement cycle consists of
Np = 32 identical FMCW chirps with a chirp duration of
Tc = 16µs. Each received chirp is sampled, resulting in a
number of Ns samples per chirp. In addition, the radar has
a MIMO structure consisting of M virtual antennas. They
form a uniform linear array (ULA) along the x-axis for
azimuth estimation (no elevation estimation). Hence the range
resolution of this radar system is ∆R = c/2B ≈ 16.7 cm.

In the following, all radar signal processing steps are briefly
described.
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Fig. 4. Overview of the radar signal processing chain.

A. Radar Signal Sampling
For each radar measurement cycle, we obtain a 3D

data cube Φ ∈ CNp×Ns×M containing the complex-valued
baseband signal. The first dimension contains the different
chirps np = 0, . . . , Np − 1 (slow time) for velocity estima-
tion, the second dimension contains the different samples per
chirp (fast time) ns = 0, . . . , Ns − 1 for range estimation,
and the third dimension is composed of the different virtual
antennas m = 1, . . . , M for azimuth estimation . We assume
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Fig. 5. Radar pulse integration for the scenario in Fig. 3(a).

the radar objects are stationary inside each measurement cycle.
This is a reasonable assumption for pedestrian tracking. For
the direction of arrival (DOA) estimation, a far-field model is
used.

One important note regarding velocity estimation. The used
radar is capable of range-Doppler processing. On the other
side, it is well known from literature [9], [8], [15], [6], [5] that
walking pedestrians are characterized by the micro-Doppler
phenomena. Due to the diverse movements of different body
parts, their velocities are, in general, different and even the
velocity of the same body part is highly time-varying. This
makes the velocity less useful for clustering of detections and
tracking of objects than the position. In this paper, we ignore
the velocity estimate in the radar signal processing and even in
later tracking in order to study whether a simpler pulse radar
(only range and DOA estimation) is sufficient for pedestrian
tracking.

B. Moving Target Indication

Another difficulty of indoor pedestrian tracking are the rich
radar reflections on ceilings, floors, walls, other installations
and items in rooms. In order to avoid static reflections, we
first apply a moving target indication (MTI) to the slow
time (Doppler) dimension (np) of the data cube Φ. We
extend the 2-pulse finite impulse response (FIR) highpass
filter in [16] to a linearphase FIR bandpass with the impulse
response (1, 0,−1) in order to suppress both static reflections
and those with large Doppler shifts (e.g. arms and legs). The
result of MTI processing is the 3D data cube Ψ.

C. Range FFT

For range estimation and further processing, an 1D fast
Fourier transformation (FFT) is applied to the fast time di-
mension (ns) of Ψ, leading to the result Θ ∈ CNp×Nr×M .
Now the second dimension contains Nr of range bins
nr = 0, . . . , Nr − 1.

D. Pulse Integration

The pulse integration aims to calculate the range
profile X(nr) as a function of the range bin nr by summing
up the 3D date cube Θ after MTI and range FFT over the
chirp and antenna dimension in order to improve the signal-
to-noise ratio. We consider three pulse integration techniques:

non-coherent-plus-non-coherent:

Xnc+nc(nr) =
M∑

m=1

Np−1∑
np=0

|Θ(np, nr, m)| ∈ RNr , (1)

coherent-plus-coherent:

Xc+c(nr) =
M∑

m=1

Xc(nr,m) ∈ CNr , (2)

coherent-plus-non-coherent:

Xc+nc(nr) =

M∑
m=1

|Xc(nr,m)| ∈ RNr , (3)

with

Xc(nr,m) =

Np−1∑
np=0

Θ(np, nr, m) ∈ CNr×M . (4)

In the non-coherent-plus-non-coherent case, both integration
steps over chirp (np) and antenna (m) are non-coherent. In
the coherent-plus-coherent case, the first integration step over
chirp (np) and the second integration step over antenna (m)
is coherent as well. In the coherent-plus-non-coherent case,
the first integration step over chirp (np) is coherent while the
second integration step over antenna (m) is non-coherent.

Fig. 5 compares the range profiles of three different cases:
a) no MTI filter, use Xnc+nc(nr)
b) with MTI filter, use Xc+c(nr)
c) with MTI filter, use Xc+nc(nr)

clearly, without the MTI filter, the static radar reflections from
ceilings, floors or walls dominate the reflections from the
pedestrian. The use of the MTI filter successfully suppresses
these static radar reflections and facilitates the detection of
pedestrians. A comparison between b) and c) in Fig. 5 shows
that coherent-plus-non-coherent technique in c) results in a
more smooth noise floor in the range profile. Xc-nc(nr),
making a peak detection simpler than in b).

E. Peak Detection
For the peak detection, we use an ordered statistic constant

false alarm rate (OS-CFAR) detector

n̂r = OSCFAR ( |Xc-nc| , pf , Nt, Ng, o ) ∈ NKR



for a given false alarm rate pf , the number of training cells Nt,
the number of guard cells Ng , and the rank of order statistic o
with Nt/2 < o < 3Nt/4 [17]. The vector n̂r contains the range
bin indices of the KR detected peaks.

F. Range Estimation
From the range bin vector n̂r containing the KR highest

peaks, the range of the radar detections is estimated by

r̂ =

(
c

2

Tc

2Nr B Ts

)
( n̂r +∆∆∆nr

) ∈ RKR
(5)

via a quadratic interpolation of the peak location

∆∆∆nr =
1

2

(βββ−1 − βββ+1)

(βββ−1 − 2βββ + βββ+1)
∈ RKR

. (6)

βββ = |Xnc(n̂r)|, βββ−1 = |Xnc(n̂r − 1)| and
βββ+1 = |Xnc(n̂r + 1)| denote the magnitude of Xnc in
the peak range bins and their left and right neighbor bins,
respectively.

G. DOA Estimation
We assume a single target in each range bin. For the azimuth

estimation

θ̂(i) = argmax
θ

ζζζ(θ, i) ∀ i ∈ n̂r, (7)

we maximize the Bartlett beamformer

ζζζ(θ, i) =

∣∣∣∣a(θ)H R(i)a(θ)

a(θ)H a(θ)

∣∣∣∣ (8)

over the azimuth angle θ. a(θ) is the steering vector of the
virtual ULA.

R(i) = Y(i)Y(i)H ∈ CM×M (9)

is the sample correlation matrix of the antenna array where
Y(i) =

[
Xc(i− 1, :)T, Xc(i, :)

T, Xc(i+ 1, :)T
]
∈ CM×3

consists of 3 snapshots of the array around the peak
location i ∈ n̂r. Xc(i− 1, :), Xc(i, :) and Xc(i+ 1, :) are
the corresponding row vectors from Xc after the coherent
pulse integration.

For further processing, all DOA estimates θ̂(i) are stacked
into a single column vector θ̂θθ ∈ RKR

.

H. Coordinate Conversion
The range estimates r̂ and the azimuth estimates θ̂θθ

of radar detections are converted to the Cartesian
coordinates (xR

k , zRk ).

I. Clustering
As in Section III-E, we apply DBSCAN clustering

to (xR
k , zRk ) in order to find clusters of radar detections.

Each cluster is a radar target, see Fig. 1. We use the radar
detections from the last 5 radar measurement cycles for the
clustering to guarantee a high number of radar detections for
a reliable estimate of the covariance matrix for each cluster.
We use the neighborhood radius ε = 0.2 m and the minimum
number of cmin = 3 detections for DBSCAN. The results of
this clustering are the mean pR

k and covariance CR
k of radar

targets in the (x, z) plane.
Fig. 6(b) shows the result for the scenario in Fig. 3(a). In

this case, DBSCAN finds two targets. Both targets originate
from the same pedestrian and are due to the large spatial extent

of the object in body height. As expected, we do not have any
targets from the static radar reflections at the end of the radar
signal processing chain.
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Fig. 6. Detected targets for the scenario in Fig. 3(a). (a) From image. (b)
From radar signal.

V. HETEROGENEOUS SENSOR FUSION

Fig. 7 gives an overview about the Kalman filter based
fusion tracking with camera (pC

k , C
C
k) and radar targets

(pR
k , CR

k ) as input. The targets, separately detected in the
image and radar signal, are now further processed us-
ing a heterogeneous sensor fusion in order to obtain ob-
jects (pedestrians). In the following, we define the camera
domain C = (pC

k , C
C
k), the radar domain R = (pR

k , CR
k ), and

the fusion domain F = (pC
k , C

C
k) ∧ (pR

k , CR
k ). Here, the fu-

sion domain F uses only associated camera and radar mea-
surements in each time slot of the duration TF .

A. Data Alignment
So far, each sensor (camera and radar) provides for

each detected target, the mean position and covariance(
pX
kX ,CX

kX

)
, 1 ≤ k ≤ KX , X ∈ {C,R}. But both sensors

run at different frame rates. This makes it necessary to define
a common time domain to combine the camera and the radar
targets. We introduce a fusion time slot of duration TF . Based
on the timestamps of the targets, all targets of the camera
and radar appearing in the same time slot are validated in a
measurement-to-measurement data association before fusion
and tracking.

B. Measurement-to-Measurement Data Association
For the measurement-to-measurement data association, we

make use of ellipsoidal gating by computing the Mahalanobis
distance

d2ij = zTij C
−1
ij zij (10)

with zij = pi − pj = [xi, zi]
T − [xj , zj ]

T and Cij =
(Ci +Cj) /2 for all pairs of targets

(
pX
kX ,CX

kX

)
in each

fusion time slot. We obtain the measurement-to-measurement
association set

Υ =
{
d2ij ≤ γ(α)

}
(11)

leading to |Υ| ≤ (KCKR) associated targets. The threshold
γ(α) is obtained from the inverse χ2 cumulative distribution
function with 2 degrees of freedom at a significance level α.



C. Measurement-to-Track Data Association
For the measurement-to-track data association, we check

how close a target is to an existing track. For this purpose, we
again make use of the ellipsoidal gating

d2 = (Bxn+1 − p)
T (

P∗
n+1

)−1
(Bxn+1 − p) (12)

with the Kalman filter state vector prediction xn+1, the
system noise input matrix B, the residual error covariance
matrix P∗

n+1 = MPn+1 M
T +Rn+1, the measurement ma-

trix M, the state covariance prediction Pn+1, and the latest
measurement noise covariance matrix Rn+1. We use the James
Munkres’ variant of the Hungarian assignment algorithm to
find the lowest cost regarding association of predicted track
state xn+1 and given measurement p ∈ Υ in order to find
the measurement-to-track association set Ω, the unassigned
track set Ψ and the unassigned measurement set Θ between
all tracks and associated targets in Υ [18].

D. Track Management and Track Initialization
All association sets, the measurement-to-track association

set Ω, the unassigned track set Ψ and the unassigned mea-
surement set Θ need to be managed in terms of a track update,
creation of a new track or a track deletion. Fur this purpose,
we apply a finite state machine (FSM) track management
which consists of five different states for each track: candidate,
tentative, confirmed, expiring, and delete. The most reliable
tracks are found in confirmed state and denote the final object
representing a detected pedestrian each as shown in Fig. 1.

The initialization of a new track

xn = MT p̂ ∈ R4 (13)

requires the estimated position p̂ at the latest time instance
[19] and further, to fully initialize the Kalman filter, the initial
measurement noise covariance matrix

Rn =
1

|Θ|
∑
κ∈Θ

Cκ (14)

and the initial estimation error covariance matrix

Pn = MT Rn M+BQBT. (15)

E. Kalman Filtering and Prediction
As a human motion model we consider a simple con-

stant velocity linear movement model with a random walk-
ing velocity. In this case, the state vector at fusion time
slot n is xn = [x(n), vx(n), z(n), vz(n)]

T ∈ R4. The motion
model is xn+1 = Axn +Bq with the state transition matrix
A, system noise input matrix B and the system noise vector
q ∼ N(0,Q). Note that the incoming measurement in our
system only contains the (x, z) position of a target (no usage
of velocity estimates). We use a standard linear Kalman filter
for tracking.

VI. TRACKING EVALUATION

A. Experiments
The stationary but portable tracking system is placed in

height y = 1.5 m and horizontally aligned to the floor. The
image and radar signal processing is done offline. Each sensor
provides a certain amount of frames per second (FPS), the
camera with FPSC ≈ 48 and the radar with FPSR ≈ 94 where
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Fig. 7. Overview of the heterogeneous sensor fusion chain.

each radar measurement cycle provides one radar frame. The
time slot duration for fusion is TF = 0.05 s yielding 20 FPS.

We collected image and radar signals for four different
walking pedestrian scenarios: (a) single pedestrian walking
towards and away from the sensors, (b) single pedestrian
walking in a circle, (c) single pedestrian walking in a circle
around an occluding dummy, (d) single pedestrian walking in
a circle and pushing a metal shopping cart, see Fig. 8(a-d).
Each scenario has been captured for a duration of 20 seconds.

We compare the results of camera only tracking, radar only
tracking with fusion based tracking. In the first two cases,
only the targets detected from image or radar signal are used.
Each tracking runs independently by using the same Kalman
filter and track management. For performance evaluation, only
confirmed tracks are considered.

For a quantitative performance evaluation, we make use of
the 3D-MOTChallenge development kit from [20]. We use the
metrics recall, precision, false alarm rate (FAR), the number
of mostly tracked (MT)1, partly tracked (PT)2 and mostly lost
(ML)3 objects. Furthermore, we calculate the multiple object
tracking accuracy

MOTA = 1−
∑

tF
(FPtF + FNtF + IDStF )∑

tF
GTtF

∈ (−∞, 1]

(16)

from the number of false positive (FP) and false negative
(FN) detections, the number of identity switches (IDS) and the
number of ground truth (GT) objects of all frames with the
frame index tF . Since no real 3D GT data is available, we took
the measurement data from both sensors, removed outliers and
created manually a trajectory per pedestrian to have quasi GT

1A pedestrian is MT if tracked at least 80% of the time being present in
consecutive frames.

2If tracked between 20% and 80% of the time.
3If tracked at most 20% of the time.



for performance evaluation. MOTA = 1 indicates a perfect
tracking, while multiple object tracking accuracy (MOTA) can
become negative if we have too many FP detections and/or FN
detections and IDS.

Additionally, [20] provides the number of interruptions
during the tracking of a pedestrian called fragments (FM) and,
as a measure of localization precision in the physical 3D space
(not in the image), the multiple object tracking precision

MOTP3D = 1−
∑

i,tF
di,tF

td
∑

tF
ctF

∈ [0, 1]. (17)

The parameter ctF denotes the number of object matches in
frame tF , di,tF is the Euclidean distance between object i to
its assigned ground truth object, and td = 1 m is the distance
threshold for pedestrian tracking.

B. Results
Fig. 8 shows the tracking results of our four scenarios and

three tracking cases. The tracks provided with track identi-
fication (ID), position covariance (ellipse), velocity estimate
including direction as an arrow are shown.

In Fig. 8(a) the pedestrian is walking towards and away
from the sensors. This is quite difficult to detect in an image
since the pedestrian is growing and shrinking in size only. In
this case, the track with ID = 2 in Fig. 8(e) does not respond
as quickly, as the radar tracking in Fig. 8(i), indicated by the
magnitude of the velocity arrow. The radar tracking snapshot
shows a good track regarding position and velocity, but it has
a larger track ID = 4 indicating several FP detections in the
past. The best tradeoff shows the fusion tracking in Fig. 8(m).

Fig. 8(b) shows a scene of a pedestrian walking in a circle,
passing the wall closely and walking through blind disparity
areas (see Fig. 3(b)). The camera tracking in Fig. 8(f) suffers
from wall detections caused by overfitted human upper body
detections while the radar tracking in Fig. 8(j) loses the track
when the pedestrian moved laterally and in addition directly
in front of the wall. The fusion tracking in Fig. 8(n) shows a
good tracking result with the lowest track ID and the longest
trajectory.

The third scenario in Fig. 8(c) is an extension of the second
scenario by placing an occluding dummy in the middle of
the scene. The camera tracking in Fig. 8(g) shows two false
tracks due to wall detections and since the dummy is detected
as well by the human upper body detection. The radar tracking
in Fig. 8(k) and the fusion tracking in Fig. 8(o) seem to be
robust enough since the dummy is a static object. But the
dummy causes fragments in the trajectories due to occlusion
of the pedestrian.

Fig. 8(d) plots a scene where a pedestrian is pushing
a shopping cart. Such a shopping cart, with its reflecting
and semi-transparent wire frame made out of metal, is a
challenge in both image and radar signal processing. The
camera tracking in Fig. 8(h) tracks both the pedestrian and
the shopping cart including 2 false tracks placed at the wall.

Considering the radar tracking in Fig. 8(l), it is not clear if
the pedestrian is still in focus or the shopping cart. The fusion
tracking in 8(p) still provides a single track.

Table I provides the quantitative performance evaluation
result for all four walking pedestrian scenarios together. The
camera tracking approaches a MOTA of -16.7%, while the
radar tracking achieves a MOTA of 38.0%. The best result
is obtained via fusion tracking with a MOTA equal to 90.9%.
Comparing the MOTP3D, the fusion tracking provides the best
result with 90.3%.

So far the quantitative performance evaluation has been
done with one pedestrian only since the creation of manually
labeled GT data is highly time demanding and difficult,
especially in multiple object scenarios where objects occlude
each other. In a future study, multiple pedestrian scenarios
have to be considered.

VII. CONCLUSION

We have presented a pedestrian detection and tracking
system for indoor environments consisting of a stereo camera,
a radar and a fusion unit. Due to specific indoor challenges
such as occlusion and rich reflections, either a camera or
radar only system may not satisfy detection and tracking
performance. Some preliminary experiments have shown that
fusing the two heterogeneous sensors can significantly improve
the tracking performance. The camera only tracking achieves a
MOTA of -16.7%, the radar only tracking reaches an accuracy
of 38.0%, while the fusion tracking provides the best MOTA
result of 90.9%. Furthermore, the proposed fusion system
achieves a MOTP3D of 90.3% compared to 83.4% and 81.8%
obtained via camera and radar only tracking, respectively.

The radial velocity from the radar has not been considered in
this paper. The next step would be to integrate both scene flow
information from the stereo camera and velocity information
from the radar into the heterogeneous sensor fusion.
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