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ABSTRACT

Calibration of an antenna array is very important for high-reso-

lution direction-of-arrival (DOA) estimation. In this paper, we

study this issue for an automotive frequency modulated continu-

ous wave (FMCW) radar whose low-cost dielectric lens antenna

causes, in addition to the coupling between sensor elements and

gain or phase mismatch, direction-dependent perturbations to the

sensor response. We apply both global and local calibration meth-

ods and compare their performance.

1. INTRODUCTION

Automotive radar sensors are used for many driver assistance and

safety systems such as adaptive cruise control (ACC), lane change

monitoring, brake assistant, collision warning, and prevention. In

present automotive radar systems, only targets in different dist-

ance-velocity cells can be resolved. The increasing demand on

safety requirements leads to efforts improving the DOA estimation

to allow resolution of targets even in the same distance-velocity

cell. This is one important goal of our KRAFAS project [1] (cost

optimized radar sensor for active driver assistance systems).

Current automotive radar systems use the monopulse tech-

nique for DOA estimation, e.g. by comparing the received sig-

nal strength of several antenna beams [2]. The DOA resolution

is poor since automotive radar have typically a low antenna aper-

ture due to size and cost restriction. A natural solution is thus the

use of well known high-resolution methods for DOA estimation,

in particular the family of subspace based methods like MUSIC

and ESPRIT [3] because they are relatively simple to implement.

These methods, however, require a number of assumptions about

the signal and antenna which are, unfortunately, not always satis-

fied in automotive applications. At least for the radar sensor we

currently develop, we are facing a number of practical problems:

a small number of snapshots, multipath propagation, targets over-

lapping in frequency domain due to FMCW, sometimes strongly

correlated source signals, and sensor errors.

In this paper, we focus on the last issue. A low-cost dielectric

lens of our radar sensor for focussing in elevation causes direct-

ion-dependent sensor response errors which have to be corrected
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before high-resolution angle estimation. We report our experience

with both global and local calibration methods [4, 5, 6, 7, 8].

The paper is organized as follows. Section 2 introduces our

automotive radar antenna. Section 3 briefly reviews the concept of

subspace based high-resolution DOA estimation. Local and global

calibration of the antenna array are described in section 4 and com-

pared in section 5 through computer experiments.

2. FMCW LONG RANGE AUTOMOTIVE RADAR

The automotive radar sensor under study is a long range radar

based on (linear) FMCW modulation. Table 1 summaries its main

specifications. The receiving antenna is a uniform linear array

(ULA) consisting of M = 8 elements with an element spacing

d = λ. This spacing leads to grating lobes, but also a narrow main

lobe. It also allows for a better isolation between the elements re-

ducing the cross coupling. Additionally, high-gain elements can

be used to increase the signal-to-noise ratio (SNR) [9]. Since the

transmitter antenna has a limited azimuth range as well, grating

lobes do not cause serious problems.

frequency range [GHz] 76∼77

distance range/accuracy/resolution [m] 2∼200, 0.5, 2

velocity range/accuracy/resolution [m/s] -60∼20, 0.25, 1.1

azimuth range/accuracy/resolution [◦] -8∼8, 0.4, 3

Table 1. Main specifications of the car radar sensor

Due to the FMCW modulation, the transmit frequency chang-

es linearly in time within a ramp. The received signal exhibits

a frequency difference called beat frequency. It is a linear func-

tion of both distance and Doppler shift of the target. Target detec-

tion is performed in the frequency domain, where targets appear

as spectrum peaks which are broadened by the windowing. Both

elementspace as well as beamspace signals can be used for target

detection. The latter is preferred because of a higher SNR. Several

ramps are necessary for a unique estimation of distance and veloc-

ity of all targets. The azimuth DOA estimation is also performed in

the frequency domain. Up to 3 FFT bins are used for this purpose

due to peak broadening. Assuming 4 FMCW ramps, only a fairly

small number of 12 snapshots is available for DOA estimation [9].



One particular restriction in the antenna design is the use of a

low-cost small-size dielectric lens (radome) for focussing in ele-

vation instead of a two-dimensional patch array. Due to boundary

and reflection effects caused by the radome, each sensor element

shows a different direction-dependent gain and phase response de-

pending on its lateral position behind the radome. Fig. 1 shows

the sensor responses of all 8 elements for a varying DOA where

the phase responses are normalized at θ = 0◦. They are calculated

from an electromagnetic wave field simulation. Obviously, consid-

erable sensor mismatch exists which will limit the DOA estimation

performance if not calibrated.
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Fig. 1. Direction-dependent sensor mismatch due to boundary and

reflection effects of a radome. The phase response is normalized

at 0◦.

3. SUBSPACE BASED DOA ESTIMATION

We assume p far field narrow band source signals s(t) impinging

on an ULA. The received signal x(t) can be modeled as

x(t) = As(t) + n(t) (1)

where A = [a(θ1) . . . a(θp)] is the steering matrix, a(θ) is the

steering vector of an ULA for the DOA θ, s(t) denotes the FMCW

radar signals in FFT bins where a target has been detected, and

n(t) describes the sensor noise in the same FFT bins. Here t does

not denote the time. It is rather an index of snapshots collected

from different FFT bins and different FMCW ramps [9].

Let R = E[x(t)xH(t)] be the spatial correlation matrix. Un-

der ideal assumptions of spatially i.i.d. sensor noise as well as

uncorrelated source signals and sensor noise, efficient subspace

based methods can be applied for high-resolution DOA estima-

tion. Using an eigenvalue decomposition of R, the obtained noise

subspace matrix Un with orthonormal columns can be used to cal-

culate, e.g., the MUSIC angular spectrum

m(θ) =
‖a(θ)‖2

‖UH
n a(θ)‖

2 (2)

whose peaks correspond to target DOAs.

4. CALIBRATION

The performance of high-resolution DOA estimation for automo-

tive radar is limited by a number of factors: number of snapshots,

signal to noise ratio (SNR), correlation of the source signals, and

sensor errors. In this paper, we study antenna calibration to correct

sensor errors.

For a real antenna array, the true steering vector ã(θ) deviates

from the ideal one a(θ). The array imperfection can be modeled

by

ã(θ) = Qa(θ) (3)

where Q is a square calibration matrix. Gain and phase mis-

matches between different antenna elements can be modeled by a

complex diagonal matrixQGP. The coupling between antenna ele-

ments is typically described by a full but diagonally dominant ma-

trix Q = QC. Both QGP and QC do not depend on DOA. Angle-

dependent sensor errors are due to sensor position inaccuracy [8]

or a nonideal dielectric lens as in our case. Here Q = QL(θ)

is a DOA-dependent complex diagonal matrix. The true received

signal is then

x̃(t) = [ã(θ1) . . . ã(θk)]s(t) + n(t). (4)

4.1. Global calibration

In so called global calibration [4, 5, 6, 7], Q is assumed to be

DOA-independent resulting in x̃(t) = QAs(t)+n(t). The task is

to estimate Q from a number of calibration measurements x(θcal
j )

(1 ≤ j ≤ J), which are sensor signals for a single emitter at the

calibration DOA θcal
j . For easy notation, let xj = x(θcal

j ) and aj =

a(θcal
j ). The matrix X = [x1 x2 . . . xJ ] contains all calibration

measurements, the matrix A = [a1 a2 . . . aJ ] the corresponding

ideal steering vectors. Below we briefly review some approaches

to estimate the global calibration matrix Q.

Pierre and Kaveh [4] first normalized all measurements xj to

unit norm. Then they proposed to minimize the sum of squared

euclidean distances between Q−1xj and aj :

min
Q

‚

‚Q
−1

X− A
‚

‚

2

F
=

J
X

j=1

‚

‚Q
−1

xj − aj

‚

‚

2
. (5)

See [5] observed that the true steering vectors of a real antenna

array may have different lengths. Hence he extended the above

approach to

min
Q,d

‖Xdiag(d) − QA‖2
F

=

J
X

j=1

‖xjdj − Qaj‖
2

(6)

where the vector d = [d1 . . . dJ ] accounts for different complex

scalings of the true steering vectors. Both approaches rely on dif-

ference based error criteria. The effect is that both direction and

length of Qaj should match to those of xj or xjdj , respectively.

For array processing methods where only the direction and

not the length of the steering vector is important (e.g. MUSIC



spectrum), Pensel [6] proposed to use an orthogonality criterion.

For each calibration measurement xj , he found a vector cj which

is orthogonal to xj . The calibration matrix Q is now determined

such that Qaj is as orthogonal to cj as possible:

min
Q

J
X

j=1

|cH
j Qaj |

2
s.t. ‖Q‖2

F = 1. (7)

The constraint ‖Q‖2
F = 1 is necessary to avoid the trivial solution

Q = 0. Note that actually each xj has an (M−1)-dimensional or-

thogonal compliment and the choice of cj is not unique. Kortke [7]

proposed a collinearity criterion. The objective is to determine Q

in such a way that Qaj is as parallel to xj as possible:

min
Q

J
X

j=1

“

‖xj‖
2‖Qaj‖

2 − |xH
j Qaj |

2
”

s.t. ‖Q‖2
F = 1. (8)

These two approaches focus on the direction of Qaj only.

Another issue in estimating the global calibration matrix Q is

the choice of its sparsity. The question, ifQ should be a full, diag-

onal or a band matrix, depends on the nature of the sensor errors.

Another important factor, however, is the number of calibration

measurements J in relation to the number of unknown parame-

ters in Q. For a weak coupling between the sensor elements and

a small DOA range of calibration measurements, a tridiagonal Q

might result in a better calibration performance than a full Q.

4.2. Local calibration

In local calibration, the diagonal calibration matrix Q(θ) depends

on the DOA of interest. In this case, the previous four approaches

can not be applied. For each DOA of interest θeval
k during evalua-

tion, Lanne et al. [8] proposed to determine Q(θeval
k ) by

min
Q(θeval

k
)

‚

‚

‚

“

X −Q(θeval
k )A

”

W
1

2 (θeval
k )

‚

‚

‚

2

F

=
J

X

j=1

wj(θ
eval
k )

‚

‚

‚
(xj − Q(θeval

k )aj)
‚

‚

‚

2

(9)

where W(θeval
k ) = diag(w1(θ

eval
k ), . . . , wJ (θeval

k )) is a diagonal

matrix for weighting the calibration measurements with weight-

ings wj(θ
eval
k ) = exp(−α|θcal

j − θeval
k |) and α > 0. Its effect is a

local exponentially windowed smoothing of the calibration results

based on one steering vector.

4.3. How to use the calibration matrix

Once we have estimated the global or local calibration matrix Q̂,

there are two different ways to use it. The first approach is to pro-

cess the received sensor vector x̃(t) = QAs(t) + n(t) as usual

like the estimation of the noise subspace matrix Ûn from the corre-

lation matrix of x̃(t). We use the approximated true steering vector

Q̂(θ)a(θ) instead of the ideal one a(θ) in the MUSIC spectrum

m(θ) =
‖Q̂(θ)a(θ)‖2

‖ÛH
n Q̂(θ)a(θ)‖2

(10)

and maximize it over θ. This approach is applicable to both global

and local calibration. In global calibration, Q̂(θ) is fixed and inde-

pendent of θ. In local calibration, Q̂(θ) = Q̂(θeval
k ) if θ = θeval

k , or

a linear interpolation of the amplitudes and phases of the diagonal

elements of Q̂(θeval
k ) otherwise. The main advantage of this ap-

proach is that the noise n(t) is still spatially white. This simplifies

the subspace discrimination and order estimation. The main draw-

back is that decorrelation algorithms like spatial smoothing can not

be applied since we lose the ULA property due to Q̂(θ)a(θ) even

if the ideal array is an ULA.

The second approach is to restore the ideal steering vector by

using the inverse calibration matrix

xcor(t) = Q̂
−1

x̃(t) = As(t) + Q̂
−1

n(t). (11)

Algebraic methods for DOA estimation like rooting methods or

ESPRIT can then be applied to xcor(t). Also correlated signals

can be dealt with decorrelation algorithms. One drawback of this

approach is that the transformed noise Q̂−1n(t) is in general not

spatially white, but with a known correlation matrix. Another dis-

advantage is that this approach is not applicable to local calibra-

tion. If x̃(t) contains a mixture of incoming signals from differ-

ent DOAs, which local calibration matrix Q̂(θ) should be used

in (11)?

In the following, we will use the first approach, i.e. the MU-

SIC spectrum (10), for DOA estimation for a fair comparison be-

tween global and local calibration.

5. SIMULATIONS AND RESULTS

Since this radar sensor is still under development, we use MAT-

LAB to simulate both calibration measurements and calibration as

well as DOA estimation.

5.1. Calibration

The sensor errors of the dielectric lens, as depicted in Fig. 1, are

taken from electromagnetic field simulations. Coupling between

elements is simulated using a log-normally distributed random pro-

cess for the amplitudes of the coupling matrix QC, with standard

deviation σC = 2dB and mean µ12 = −20dB for coupling be-

tween direct neighbours and µ13 = −30dB for coupling to other

elements, respectively. The phase of all coupling elements is uni-

formly distributed between 0 and 2π. Gain mismatch is simu-

lated using a zero-mean log-normally distributed random process

with standard deviation σG = 1.0dB. Phase mismatch is sim-

ulated with a uniformly distributed random process in the range

[−20◦ 20◦]. The antenna is an 8 element ULA with d = λ. We

always use 12 snapshots only in both calibration and DOA esti-

mation. The simulated calibration measurements are taken in the

DOA range −θcal
max = θcal

1 ≤ θcal
j ≤ θcal

J = θcal
max with the DOA

step ∆θcal = θcal
j − θcal

j−1. In order to simulate the DOA uncer-

tainty when placing the transmitter in calibration measurements,

the true calibration DOAs θcal
j are perturbated by adding a zero-

mean Gaussian random angle θrand with standard deviation σθcal . If

the realization of θrand is larger than 0.9∆θcal, it is dropped and a
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new realization is generated. The SNR used is 50dB (corner re-

flector in close proximity). The calibration measurement vectors

xj are derived from eigenanalysis of the simulated received sig-

nal as in [4]. Once the calibration measurements X are generated,

different calibration algorithms are used to estimate the calibration

matrix Q.

5.2. DOA estimation

We use theMUSIC spectrum (10) for DOA estimation. There is ei-

ther one signal target or two uncorrelated targets with equal power.

The number of targets is assumed to be known. The SNR for each

target is 40dB, so DOA estimation errors are mainly due to imper-

fect calibration and a limited number of 12 snapshots. In case of

one target, the DOA of the target is varied between ±8◦ in steps

of roughly 0.5◦. For two targets, one of the DOAs is varied in the

same range, and the second DOA is kept at a fixed angular dis-

tance ∆θ = θ2 − θ1. The MUSIC maximum search is performed

in the range of ±15◦ in steps of 0.1◦, the DOA estimation is re-

fined using peak interpolation for the highest peaks. From all DOA

estimates of 250 trials and all target DOAs, we calculate the root

mean squared error (RMSE).

5.3. Accuracy Results

In the following, we present some simulation results to compare

the algorithms by See [5], Pensel [6], and Kortke [7] for global

calibration with that by Lanne [8] for local calibration.

In Fig. 2, we plot the RMSE of DOA estimation versus the

DOA range θcal
max of calibration measurement with a fixed DOA

step of ∆θcal = 1◦. For our application, a long range radar, this

study is of particular importance since the transmitting antenna is

focused only on a small angular field of view. This results in a

small DOA range available for calibration measurement as well.

Without any calibration, the RMSE value is roughly 0.33◦. For

the Pensel algorithm, we used a tridiagonal (TD) calibration ma-

trix Q as we observed numerical difficulties when using a full ma-

trix Q. The local calibration used a DOA step of ∆θeval
k = 1◦

and α = 2 during evaluation of Q(θeval
k ). The calibration mea-

surement is assumed to be perfect (σθcal = 0). As we see from

Fig. 2, the performance of the algorithm by See (and by Pierre &

Kaveh) is pretty bad. The algorithm by Pensel achieves a consider-

able improvement, in particular for θcal
max ≥ 15◦. The best result is

achieved by the Kortke algorithm and the local calibration. Their

RMSE value in this experiment is roughly 0.02◦ .

In Fig. 3, the RMSE of two targets is shown for a varying

target angular distance. In this experiment with θcal
max = 20◦, we

were only able to resolve the close targets with the algorithms by

Pensel, Kortke, and Lanne. The Kortke algorithm outperforms the

others. This is due to the collinearity criterion which seems to be

best suitable for MUSIC DOA estimation.

To simulate real calibration measurements, the standard de-

viation of the calibration DOA σθcal is now varied between 0◦

and 0.1◦. The latter is equivalent to a standard deviation of about

10mm for a corner reflector in 6m distance. Fig. 4 shows the sim-

ulation results. Obviously, the algorithm by See is also very sen-

sitive to the calibration DOA errors. The algorithm by Pensel and

the local calibration are quite robust. Their RMSE values are well

below the required DOA accuracy of 0.4◦. The Kortke algorithm

satisfies this requirement only if σθcal < 0.08◦.

As we see from Fig. 5, the Pensel algorithm is sensitive to the

DOA step ∆θcal. The Kortke algorithm, however, is very robust

against ∆θcal. At least in the range 0◦ ≤ ∆θcal ≤ 3◦, the RMSE

of the Kortke algorithm remains almost constant around 0.02◦ .

For the local calibration, there is an interesting observation. If

the calibration DOA grid θcal
j and evaluation DOA grid θeval

k coin-

cide, e.g. ∆θcal = ∆θeval = 1◦, 2◦ or 3◦, we achieve the best

performance. In this case, the local calibration returns approxi-

mated steering vectors Q̂aj which are almost collinear to the cor-
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responding true steering vector xj . This is not the case if θeval
k does

not coincide with any θcal
j . In Fig. 5 with ∆θcal = 3◦, the perfor-

mance of using the same grid ∆θeval = 3◦ for evaluation is better

than using a finer evaluation DOA grid with ∆θeval = 2◦, 1◦, or

even 0.1◦.

5.4. Implementation cost

In this subsection, we briefly compare the global and local cali-

bration with respect to the implementation cost. The estimation of

the global or local calibration matrix Q from the calibration mea-

surements is typically done offline. For the global calibration, we

need to estimate and store a fixed calibration matrix Q. In the

case of local calibration, we need to estimate and store many dif-

ferent diagonal calibration matricesQ(θeval
k ) at an evaluation DOA

grid θeval
k . Clearly, the memory requirement of local calibration is

higher if the number of evaluation DOAs is larger than the number

of antenna elements.

For the calculation of the MUSIC spectrum (10), we have to

take into account that Q̂ for the global calibration is in general

a full matrix. In contrast, each Q̂(θ) for the local calibration is

diagonal resulting in a low computational complexity for the cal-

culation of Q̂a. The need of interpolating Q̂(θ) if θ 6= θeval
k can be

reduced if we choose a fine evaluation DOA grid at the expense of

a higher memory requirement. If we choose to save computational

effort by storing ã(θ) = Q̂(θ)a(θ) in a fine grid, the computa-

tional effort for calculating Q̂a is shifted to offline calibration, and

the memory and computational effort is the same for both global

and local calibration.

6. CONCLUSIONS

In this paper, we studied different approaches for global and lo-

cal calibration of an automotive radar antenna array. Both algo-

rithms to estimate the calibration matrix and strategies to use it

in high-resolution DOA estimation were discussed. In an exper-

iment to correct DOA-dependent sensor errors caused by a diel-

ectric lens in addition to gain/phase mismatch and coupling be-

tween the elements, the local calibration shows its superior per-

formance. Surprisingly, also the global calibration technique pro-

posed by Kortke achieves a comparable performance except for

a slightly higher sensitivity with respect to the DOA accuracy of

calibration measurements. In contrast, the least squares based ap-

proaches by Pierre and Kaveh as well as See fail in our experi-

ments. The reason is that the collinearity between the true and

approximated steering vector is a better error criterion than their

distance for DOA estimators which rely on the orthogonality be-

tween the signal and noise subspace.

The authors would like to thank all partners of the KRAFAS

consortium, especially Peter Wenig from University of Erlangen

for dielectric lens simulations.

7. REFERENCES

[1] Martin Schneider, “KRAFAS - Innovationen in der

Mikrosystemtechnik und der Hochfrequenz-Mikroelektronik

für kostenoptimierte Radarsensoren im Automotive-Bereich,”

in VDE Kongress, Aachen, Germany, 2006, pp. 275–282.

[2] Merrill I. Skolnik, Introduction to Radar Systems, McGraw-

Hill, 3 edition, 2001.

[3] Hamid Krim and Mats Viberg, “Two decades of array signal

processing research,” IEEE Signal Processing Magazine, vol.

13, no. 4, pp. 67–94, July 1996.

[4] J. Pierre and M. Kaveh, “Experimental performance of cal-

ibration and direction-finding algorithms,” in Proc. IEEE

Conference on Acoustics, Speech, and Signal Processing

(ICASSP), 1991, pp. 1365–1368.

[5] C. M. S. See, “Sensor array calibration in the presence of mu-

tual coupling and unknown sensor gains and phases,” Elec-

tronics Letters, vol. 30, no. 5, pp. 373–374, Mar. 1994.

[6] K. Pensel, H. Aroudaki, and J.A. Nossek, “Calibration of

smart antennas in a GSM network,” in Proc. Signal Process-

ing Advances in Wireless Communications (SPAWC), 1999.

[7] Andreas Kortke, “A new calibration algorithm for smart an-

tenna arrays,” in Proc. Vehicular Technology Conference, Apr.

2003.

[8] Maria Lanne, Astrid Lundgren, and Mats Viberg, “Calibrat-

ing an array with scan dependent errors using a sparse grid,”

in Proc. Asilomar Conference on Signals, Systems and Com-

puters (ACSSC), 2006, pp. 2242–2246.

[9] Michael Schoor and Bin Yang, “High-resolution angle estima-

tion for an automotive FMCW radar sensor,” in Proc. Intern.

Radar Symposium (IRS), Cologne, Germany, Sept. 2007.


