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Abstract—This paper introduces the application

of high-resolution angle estimation algorithms for a

77GHz automotive long range radar sensor. High-

resolution direction of arrival (DOA) estimation is

important for future safety systems. Using FMCW

principle, major challenges discussed in this paper

are small number of snapshots, correlation of the

signals, and antenna mismatches. Simulation results

allow analysis of these effects and help designing the

sensor. Road traffic measurements show superior DOA

resolution and the feasibility of high-resolution angle

estimation.

I. INTRODUCTION

In present automotive radar systems only targets

in different range and velocity cells can be resolved.

Increasing demand on safety functionality leads to ef-

forts increasing the performance of angle estimation

to allow resolution of targets in the same distance-

velocity cell, for example two standing cars at the end

of a traffic jam or other standing obstacles on the

road. High-resolution methods for angle estimation

such as MUSIC [1] or ESPRIT [2] enable radar sen-

sors to resolve even very closely spaced targets. This

is one important part of the KRAFAS project [3] (cost

optimized radar sensor for active driver assistance

systems) funded by the german ministry of education

and research (BMBF). The goal of the project is to

delevop some low cost small sized 77GHz long-range

radar (LRR) sensor capable of resolving two close

targets with angle differences as low as 3 degrees [4].

Though the algorithms are well known in theory,

major challenges must be met before application on

real automotive FMCW radar systems. The major

ones are discussed in this paper. It is organized

as follows: Section II introduces the radar sensor

concept and signal processing algorithms for FMCW

radar systems as well as DOA estimation. Section III

focuses on the application of high-resolution angle

estimation algorithms for automotive FMCW radar

sensors. In section IV simulation results are shown as

well as road traffic measurements showing the feasi-

bility of high-resolution angle estimation algorithms

with FMCW radar systems.

II. RADAR SENSOR CONCEPT AND SIGNAL

PROCESSING

A. Frontend Concept

The specification of the automotive LRR sensor

developed in the KRAFAS project includes a high

estimation accuracy of θerr ≤ 0.4◦ for the azimuth

direction of arrival (DOA), an angular resolution of

∆θ ≤ 3◦ and target ranges d up to 200m with relative

target velocities v between −60m
s

and 20m
s

.
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Fig. 1. Block diagram of the proposed FMCW radar frontend

concept with M parallel Rx channels.

Fig. 1 shows a block diagram of the FMCW radar

based frontend concept proposed in the KRAFAS

project. The sensor basically is a bistatic radar sensor

using M receive channels with identical distances

da between each receive antenna, forming a so-

called uniform linear array (ULA). This array allows

using computationally efficient algorithms for DOA

estimation such as Root-MUSIC [5] or ESPRIT, and

also to use decorrelation algorithms such as forward

backward averaging [6] and spatial smoothing [7].



B. FMCW Radar Signal Processing

Using a FMCW radar system, each target in a

(d,v) cell corresponds to a baseband sinusoidal signal

with a frequency depending on the ramp parameters

such as slope and center frequency as well as target

parameters d and v. Therefore the baseband signal

is a mixture of multiple sinusoids. Using a FFT

the baseband signals are transformed to frequency

domain. Peak detection using CFAR principles for

each ramp and matching leads to the target list con-

taining distance and velocity of all detected targets.

This can also be done in beamspace using digital

beamforming (DBF), as better SNR and suppression

of interferences from the side of the road improve

performance. Finally the angles of all targets are

estimated.

C. DOA Estimation

In the past conventional methods for DOA estima-

tion such as amplitude matching (AM) [8] have been

used in automotive radar systems. One important

drawback of these methods is the lack of angular

resolution due to the limited aperture size of the

antenna, i.e. to resolve two or more closely spaced

targets in the same (d,v) cell, which is important for

future safety systems.

This is why high resolution methods are used to

estimate the DOA of multiple targets. The angle

resolution in this case is independent of the aperture

size, under certain ideal assumptions like uncorre-

lated signals, high SNR, and long observations.

The family of subspace based high resolution

methods uses an eigendecomposition of the (spatial)

correlation matrix of the sensor signals to estimate

the signal or noise subspace which is used for DOA

estimation. The signal model for the received sensor

signal x is given by

x = As + n (1)

where A = [a(θ1) a(θ2) . . . a(θk)] is the steering

matrix consisting of the steering vectors a(θ) =

[1, ej2π da

λ
sin(θ), . . . , ej2(M−1)π da

λ
sin(θ)]T of a uni-

form linear array, s is the vector describing the

k impinging signal waveforms and n contains the

sensor noise which is assumed to be spatially i.i.d.

The correlation matrix and its eigendecomposition of

x is

R = ARsA
H + σ2

I = UsΛsUs

H + UnΛnUn

H

(2)

with the signal correlation matrix Rs, the identity

matrix I, the signal subspace Us consisting of the

k dominant eigenvectors, and the noise subspace Un

consisting of the remaining N−k eigenvectors. Since

the column vectors of Us and A span the same signal

subspace, each peak in the MUSIC angular spectrum

w(θ) =
a(θ)Ha(θ)

a(θ)HUnUn

H
a(θ)

(3)

corresponds to a target DOA.

Other DOA estimators such as Root-MUSIC, ES-

PRIT or SUMWE [9] rely on the shifting property of

the ULA. By dividing the array into several overlap-

ping subarrays, their steering vectors for one target

and several subarrays are identical. Obviously, these

algorithms fail if this shifting property is violated,

e.g. by imperfections of the antenna array.

One important step for subspace based high reso-

lution methods is subspace estimation. This is done

by computing an eigendecomposition of the spatial

correlation matrix. Information theoretic criteria such

as MDL or AIC can be used to estimate the number

of signals [10]. If the subspace estimation fails, DOA

estimators give wrong results such as high angle

error, false or missed targets. There are several chal-

lenges to meet regarding subspace estimation, which

will be explained in more details in the following

sections.

D. Decorrelation

When signals are correlated, the condition of the

signal correlation matrix Rs is degraded and also

the condition of the correlation matrix R. This

complicates subspace estimation and even leads to

missed targets and high angle errors. Decorrelation

algorithms help by reestablishing the condition of the

signal correlation matrix. They make use of symme-

try properties of the ULA. Forward backward averag-

ing [6] uses the centrosymmetry property. The effec-

tive aperture is preserved, but the algorithm is limited

to two correlated signals. Spatial smoothing [7] uses

the shifting property. Subarrays are averaged and

correlated signals up to the number of subarrays are

possible. One drawback is that the effective aperture

is reduced which limits accuracy of the estimated

DOAs. Both algorithms, and also the combination

of both, namely forward backward spatial smoothing

(FBSS), rely on the symmetry properties. If these

are violated e.g. by the forementioned imperfections

of the antenna array, the estimated subspaces are

disturbed and angle errors occur.



Window ∆f = 1 bin 2 bins 3 bins

Chebychev 60dB −5.9dB −28.7dB −62.6dB

Chebychev 80dB −4.4dB −19.4dB −59.1dB

Chebychev 100dB −3.5dB −15.0dB −38.5dB

Hamming −7.4dB −65.1dB −73.6dB

Hann −6.0dB −63.7dB −72.2dB

TABLE I

SIGNAL POWER LOSS OF FREQUENCY BINS ADJACENT TO A

PEAK BIN

x[m]

y[m]

�

�
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Fig. 2. “Butterfly targets” with frequency overlapping on

FMCW radar systems. Real targets are marked with �, false

targets with +. Dotted lines represent constant angles or dis-

tances.

III. APPLICATION ON FMCW RADAR

A. FMCW: Number of snapshots and overlapping

A major challenge in the case of FMCW radar

is the low number of snapshots. In frequency do-

main, only one to three bins can be used for angle

estimation. Table I shows the theoretic signal power

loss observed with different FFT windows when

bins adjacent to the peak bin are used to estimate

the correlation matrix. With a Chebychev window

(100dB sidelobe attenuation) the loss is only 3.5dB,

therefore a high amount of signal energy is still

contained in these bins. The number of snapshots

can be increased, though they are not independent

anymore. When using up to four FMCW ramps, the

total number of snapshots can be as high as twelve.

Unfortunately, not all of these bins can be used.

With the FMCW principle, several targets at different

(d,v) cells can have the same baseband frequency.

In this case, the corresponding samples contain the

angle information of all involved targets. This can

lead to false targets or “butterfly targets”. Fig. 2 il-

lustrates an example for this situation: Given two real

targets with different distances and relative velocities.

They share the same frequency in one ramp. Using

high-resolution angle estimation with all snapshots

available for each (d,v) cell, two angles are detected,

but only one is from the real target at the examined

(d,v) cell. One way to solve this problem is to

discard the affected FMCW ramp for angle detection,

assuming that frequency overlapping can be detected.

B. Correlation of Signals

During measurements, it was often observed that

signals were correlated. The degree of the correlation

depends on the situation, but can be very high,

close to coherence, for static scenarios. This could

be considered as the worst case situation for high-

resolution DOA estimation. It is hard to give an

average correlation. Using decorrelation algorithms

improves performance for correlated signals as well

as for uncorrelated scenarios as smoothing virtually

increases the number of snapshots.

C. Calibration mismatches

Most of the subspace based high-resolution DOA

estimators rely on symmetry properties of the antenna

array and knowledge of the RX channels. Due to

various impairments of the RF frontend the complex

baseband signal vector xs is a distorted version of

the ideal received vector xr. The distortion can be

modeled as

xs = GPCxr (4)

where G and P are diagonal matrices for gain and

phase mismatches, respectively, and C is a diagonally

dominant matrix accounting for electromagnetic mu-

tual coupling between the channels.

There are numerous methods for calibrating the

received signal vector, i.e. searching for (GPC)−1,

e.g. [11], [12]. They are only capable of compensat-

ing global distortions, i.e. angle-independent errors.

Angle-dependent gain and phase mismatches G(θ)
and P(θ) are mainly due to antenna pattern inho-

mogeneities which occur e.g. due to finite size of

the radome and radome reflections. Since each Rx

element is positioned at a different lateral position

behind the radome, the pattern distortions are differ-

ent at each Rx channel.

In combination with correlated signals and decor-

relation algorithms, this leads to limitations regarding

angle resolution and accuracy. As the symmetry

properties are no longer fulfilled, decorrelation algo-

rithms disturb the subspace estimation which leads

to angle errors. This effect is stronger, the higher

the correlation of the signals and the higher the

antenna imperfections are. While the second reason

is quite obvious, the first one is because the decor-

relation algorithms reestablish the condition of the

signal correlation matrix. If the condition was already

good because signals were uncorrelated, the erro-

neous contributions of the decorrelation algorithms

are small.
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Fig. 3. RMSE vs. SNR for DOA estimation using one ramp,

two coherent targets. All DOA except SUMWE use FBSS.
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Fig. 4. RMSE vs. SNR for DOA estimation using four ramps,

two coherent targets. All DOA estimators except SUMWE use

FBSS.

IV. SIMULATION RESULTS AND MEASUREMENTS

A. Simulation of angular resolution

Simulations were performed to examine the res-

olution thresholds for DOA estimation using high-

resolution algorithms. An ideal antenna array of

M = 8 elements with da = 1.0λ spacing was

used in all simulations with FMCW ramps of 1ms

length. As a worst case, two nearly coherent targets

(ρ = 0.9999) in the same (d,v) cell were simulated

with angles of θ1 = −1.5◦ and θ2 = 1.5◦ and

equal SNR. Fig. 3 shows the RMSE of both targets

for different DOA estimators using only one ramp

for angle estimation with 1000 simulation runs. The

desired angular accuracy of 0.4◦ is depicted as a

dotted line. The required SNR is about 26–27dB for

most estimators, and about 30dB for the SUMWE

algorithm.

Fig. 4 shows the same scenario using four ramps

for angle estimation. Now the algorithms need

around 21–23dB and 24dB for SUMWE to meet the

system specification.

Interestingly, subspace based high-resolution angle

estimation is possible using just one single FMCW

ramp, hence with three snapshots (frequency bins)

which is smaller than the dimension of the correlation

matrix. The number of targets was assumed to be
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Fig. 5. RMSE vs. standard deviation σg of gain error for DOA

estimation using four ramps, two uncorrelated targets.

known in all simulations. In practice the number

of targets is unknown and has to be estimated in

addition.

B. Simulation of mismatches

In all practical radar sensors, the antenna elements

have different antenna patterns and other channel

mismatches. Mismatches were simulated with log-

normally distributed gain mismatches and the stan-

dard deviation σg. Two uncorrelated signals with

equal SNR of 30dB were used in 105 runs. The

RMSE is depicted for the TLS-ESPRIT DOA estima-

tor, without and with FBSS. The results are depicted

in Fig. 5.

For small gain mismatches, the FBSS TLS-

ESPRIT algorithm gives better results as the smooth-

ing performed prior to the eigenvalue decomposition

increases virtually the number of snapshots and im-

proves the subspace estimation. As the mismatches

rise, more errors are introduced by the smoothing and

angle errors rise above the results obtained without

decorrelation. In our case, the intersection is around

the specified angular accuracy, so using FBSS yields

better results.

C. Measurements

Road traffic measurements were carried out in

order to examine the feasibility of superresolution

DOA estimation in practical application. The proto-

type radar sensor used an antenna array with M = 16
and da = λ/2 which gives the same aperture as in

our simulations.

Fig. 6 shows a traffic scenario with a single car

driving on the right lane. The road borders were

equipped with metal guarding lanes, which are also

very good radar reflectors. The DOA estimation

results are shown in Fig. 6(b) for the AM algorithm



(a) Traffic scenario

(b) Amplitude Matching (c) FBSS-MDL/MUSIC

Fig. 6. (a) Birdseye view of the traffic scenario, (b) DOA

estimation using the AM algorithm (c) DOA estimation using

the MDL/MUSIC algorithm combined with FBSS. Radial lines

indicate relative velocity (doppler).

and in Fig. 6(c) for MDL algorithm for order esti-

mation and MUSIC algorithm for DOA estimation,

combined with FBSS. The target markers in the x-y-

planes can be classified by the relative velocity. The

car in front (low relative velocity) is clearly visible as

well as reflections from guarding lanes (high relative

velocity). The difference between (b) and (c) is that

there is some major angle error in case of AM,

estimating the car 2–3m further to the right, at the

neighboring lane. This angle error can be assigned to

the reflections from multipath propagation including

the car and mirroring at the guarding lanes, being

equivalent to some multi target scenario. This cannot

be resolved in case of AM, but in case of MUSIC it

is resolvable as can be seen in the figure.

V. SUMMARY

Some of the challenges when applying high-

resolution DOA estimation for an automotive FMCW

radar sensor were discussed. The major ones are

the low number of snapshots, correlation of signals,

and antenna mismatches. This requires the use of

decorrelation algorithms which interferes with an-

tenna mismatches. System simulations show which

correlations and mismatches can be tolerated to meet

the specified angular accuracy of 0.4◦ and the angular

resolution of ∆θ = 3◦. Road traffic measurements

show the feasibility of high-resolution DOA esti-

mation algorithms and the advantage of the new

algorithms to standard amplitude matching.
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