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ABSTRACT

One major problem of time delay estimation for acoustic lo-

calization in multi-source reverberant environments is the am-

biguity in identifying out of many peaks of generalized cross-
correlation the desired time differences of arrival (TDOAs)

caused by direct paths and in assigning them correctly to in-

dividual sources. In this paper, we propose a novel geomet-
rically motivated approach “Disambiguation of TDOA esti-

mates in multi-path multi-source environments” (DATEMM).

It utilizes additional information from the auto-correlation of
sensor signals and a zero TDOA sum condition to suppress

spurious TDOA estimates. Furthermore, this method can be

used as an add-on module to improve the robustness of any
existing TDOA estimation method.

1. INTRODUCTION

The position of an acoustic source in a room is usually es-

timated from signals of a microphone array by applying a
multi-stage localization method, mainly consisting of some

preprocessing like e.g. VAD, time delay estimation, and esti-

mation of the geometric position. Most approaches up to now
work well for one source in a less reverberant environment.

The underlying signal model assumes that the source signal

s(t) propagates on a direct path with delay τi and is received
by two sensors xi(t) = his(t−τi) (i = 1, 2). By generalized

cross-correlation [1] of x1(t) and x2(t), the TDOA τ1 − τ2 is

estimated. Using several sensors with each sensor pair con-
tributing a TDOA measurement, the source position may be

estimated e.g. according to [2, 3, 4]. However, for multiple
simultaneous speakers or in a reverberant environment the re-

sults are not satisfactory.

Recent time delay estimators try to measure the (single-

source) room impulse response [5] or utilize a multi-chan-

nel cross-correlation [6] in order to cope with the multi-path
problem. Only a few articles address the multi-source prob-

lem: [7] uses subspace methods, [8] tracks individual sources

while they are overlapping, [9] extends a Viterbi search-based
system for adaptive beamforming, and [10] is based on blind

channel identification.

This paper presents some new ideas for identifying direct-

path time-delays and for assigning them to different simulta-
neous sources in a multi-source and multi-path environment

in time domain. We first describe the signal model in sec-
tion 2. Motivated by an ambiguity analysis of time delay es-

timation in section 3, we propose a new algorithm for disam-

biguation of TDOA estimates in section 4. Finally, section 5
presents some simulation results.

2. MULTI-SOURCE MULTI-PATH MODEL

Let us consider a room with N sources and M sensors. A

model of a real acoustic environment must take reverberation

of the room into account. The sensor signals xi(t) may be
expressed for given source signals sa(t) in the noise-free case

as

xi(t) =

N
∑

a=1

(ha,i ∗ sa) (t) (i = 1, . . . , M) (1)

where ∗ denotes convolution and ha,i(t) is the room impulse

response between the a-th source and the i-th sensor. We as-
sume that each room impulse response ha,i(t) consists of a

finite number La,i of significant paths, where the µ-th path is

described by its amplitude ha,i,µ and delay τa,i,µ. The delay
τa,i,µ is assumed to increase in µ. Therefore, µ = 0 repre-

sents the direct path and µ ≥ 1 stand for all echo paths. Non-
significant paths, noise, and directivity of sensors and sources

are neglected in this paper. Hence the signal model becomes

xi(t) =
N

∑

a=1

La,i−1
∑

µ=0

ha,i,µsa(t − τa,i,µ). (2)

If we consider one source or one path per source, we drop the

corresponding index a or µ in (2), respectively.

In the following, the auto-correlation function of xi(t) is
denoted by

ri(t) = E [xi(t + t0)xi(t0)] . (3)

Its local extrema will occur in distance ta,i,µν = τa,i,µ−τa,i,ν

symmetrically to the origin. The cross-correlation function of
two sensor signals xi(t) and xj(t)

rij(t) = E [xi(t + t0)xj(t0)] (4)

will show peaks of amplitude ga,ij,µν at ta,ij,µν = τa,i,µ −
τa,j,ν .
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3. AMBIGUITY OF TDOA ESTIMATES

Ambiguity of TDOA estimates arises when we obtain mul-
tiple maxima in the cross-correlation. In this case, we don’t

know which TDOA is the correct one for a particular source

and a selected sensor pair. There are three obvious reasons
for this phenomenon:

• reverberations

• multiple sources
• non-white source signals

Below we analyse the ambiguity for different cases.

3.1. One white source and multiple paths

For a single source, the two sensor signals

xi(t) =

Li−1
∑

µ=0

hi,µs(t − τi,µ) (i = 1, 2) (5)

each contain Li paths with delay τi,µ. If s(t) is white, the

cross-correlation of x1(t) and x2(t) returns at maximum L1L2

local extrema at t12,µν (0 ≤ µ < L1, 0 ≤ ν < L2).
For TDOA based localization, we are only interested in

the TDOA of the two direct paths t12,00 = τ1,0 − τ2,0. But
which peak in |r12(t)| corresponds to t12,00? This multi-path

ambiguity is caused by reverberations.

3.2. Multiple white sources and only direct paths

Regarding N white and uncorrelated sources sa(t) in an an-

echoic room, where only the direct paths from source a to
sensor i with delay τa,i contribute to the sensor signals

xi(t) =

N
∑

a=1

ha,isa(t − τa,i) (i = 1, 2) , (6)

the cross-correlation r12(t) will show at maximum N local

extrema at ta,12 (1 ≤ a ≤ N).
But which peak corresponds to which source? Resolving

this multiple-source ambiguity is important for localization,

because we have to assign each TDOA to one source and con-
sider all TDOAs of that particular source together to estimate

its geometric position.

3.3. One speech source and only direct paths

Speech signals consist of unvoiced (quasi-random) and voiced

(quasi-periodic) parts. A single periodic source in an an-
echoic room will cause many local extrema at periodic in-

tervals in the cross-correlation r12(t). So which peak corre-

sponds to the desired TDOA? To avoid this periodic ambigu-

ity, the sensor signals are usually prewhitened before cross-

correlation (e.g. GCC-PHAT [1]). This has about the same
effect like cross-correlating white sources.

3.4. Multiple sources and multiple paths

In the following we consider N uncorrelated source signals
and M pre-whitened sensor signals according to (2). The

cross-correlation rij(t) between sensor i and j can show at

maximum
∑N

a=1
La,iLa,j local extrema at ta,ij,µν . What we

need for each sensor pair, however, are N TDOAs ta,ij,00

caused by the direct paths only. The disambiguation has thus
two tasks:

• identify the TDOAs of direct paths (µ = ν = 0)
• assign direct path TDOAs to individual sources (a =

1, . . . , N)

4. DISAMBIGUATION

Our disambiguation approach DATEMM is based on the fol-

lowing four observations:

A1) Raster match:
By exploiting the peak positions of the auto-correlation

function, the extrema positions in the cross-correlation

always appear in a certain raster: a set of time marks
with known distances between them. Fig. 1 shows a

simple example with one source, two sensors, and two

paths per sensor. The raster in the cross-correlation
consists of four time marks whose distances are known

from the peak positions of the auto-correlations. By

finding this raster in the cross-correlation, its absolute
position determines the desired TDOA tij,00 of direct

paths.

s
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mjτi,0τi,1

τj,0

τj,1

t

rij(t)

tij,00tij,10 tij,01tij,11

ti,1

tj,1

t
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0 ti,1 t

rj(t)

0 tj,1

Fig. 1. Raster for one source (M = 2, Li = 2, Lj = 2)

A2) Zero TDOA sum:

For any subset of M̃ sensors, the sum of TDOAs

ta,12,µ1µ2
+ · · · + ta,M̃−1 M̃,µM̃−1

µM̃
+ ta,M̃1,µM̃ µ1

is zero [3], provided that all M̃ TDOAs are estimated
for the same source a and the same paths µi to sen-

sors i = 1, . . . , M̃ . If this sum deviates from zero, the

TDOAs don’t stem from the same source and/or paths.

A3) Array size limitations:
If we know the sensor array geometry, we can com-
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pute an upper bound for |ta,ij,00| in advance and dis-

card larger TDOA estimates.

A4) Positive extremum for direct path TDOA:
In acoustic localization, the direct path amplitudes ha,i,0

are always positive. Hence the amplitude of rij(t) cor-

responding to ta,ij,00 is positive, as well.

DATEMM is structured to three levels, motivated by the
number of sensors involved: pair-level, triple-level and array-

level. Besides reduction of ambiguity in TDOA estimates, we

also provide quality measures for TDOA estimates at each
level. They reflect the reliability of individual TDOA esti-

mates for different sources and will be useful for the estima-

tion of the number of sources N , if it is unknown. Below we
sketch the main ideas of DATEMM without implementation

details.

4.1. Direct path detection by exploiting auto-correlation

The first step at the pair-level is to detect the direct path TDOA
ta,ij,00 from the cross-correlation rij(t) by additionally ex-

ploiting auto-correlations ri(t) and rj(t). For this purpose,

we first extract the relevant peaks from both cross- and auto-
correlations, which, hopefully, include the direct paths of all

sources. For a practical implementation, we use a given num-

ber of most dominant peaks, combined with the condition that
the corresponding peaks exceed a certain threshold in magni-

tude. We use the cross-correlation amplitude ga,ij,µν as the

initial quality of TDOA ta,ij,µν . This value will be increased
or decreased during the subsequent steps. We further assume

that the direct path is always involved in all selected auto-
correlation peaks.1.

We now consider two TDOAs ta,ij,µ1ν1
and ta,ij,µ2ν2

re-

sulting from the same source a where the paths to sensor i
are common (µ1 = µ2 = µ) and one of the paths to sensor

j is a direct path (ν1 = 0 or ν2 = 0). Clearly, the distance

|ta,ij,µν1
− ta,ij,µν2

| can be found as the position of a peak
in the auto-correlation of sensor j, see Fig. 1. As the direct

path is always the shortest, we can also determine the sign of

the above difference and hence identify whether ν1 or ν2 is
the direct path. Similarly, if ν1 = ν2 = ν and one of the

two paths to sensor i is a direct path, the TDOA difference

ta,ij,µ1ν − ta,ij,µ2ν will match to a peak in ri(t).
Continuing this raster match for all TDOA pairs, ta,ij,00

will be most likely identified several times as the direct path
while all other path combinations (µ, ν) �= (0, 0) will at least

once be identified as non-direct.

This also holds for multiple uncorrelated sources, as long
as their cross-correlation peaks don’t overlap. To avoid re-

jecting a direct path TDOA that accidentally fits to the echo

of another source, the decision to reject a TDOA should be
made after all direct paths are enhanced and all echo paths

are deemphasized in their quality depending on the matching

auto-correlation amplitude. As in a practical digital applica-

1Auto-correlation peaks having no direct path involved may be identified

similarly by exploiting |ta,i,µν | = |ta,i,µ0|+|ta,i,ν0| and thus are excluded
from further considerations.

tion TDOA differences won’t fit exactly due to noise and sam-

pling, we propose to include a narrow smoothing window in
order to allow and evaluate approximate raster matching.

Ideally, we get a set of direct path TDOAs {ta,ij,00} for

each sensor pair (i, j) after the raster match process. It is the

task of the next step to assign them to different sources. In
practice, the raster match process is not perfect and the set

won’t contain all direct path TDOAs (“miss”). It might also

contain some non-direct path TDOAs (“false alarm”). They
will be partly rejected by the following steps.

4.2. Sensor-triple with zero TDOA sum

Observation A2 is trivial for M̃ = 2 sensors. It will now be
evaluated for a sensor-triple (i, j, k). Increasing the number

of involved sensors in the zero TDOA sum condition beyond

M̃ = 3 will cause ambiguity of the sum expression and in-
crease the computational effort as well as rounding errors in

practical applications.

Any triple combination of TDOAs out of sets {ta1,ij,µ1ν1
},

{ta2,jk,ν2κ2
}, and {ta3,ki,κ3µ3

} whose sum disappears, most
likely belongs to the same source a1 = a2 = a3 and has com-

mon paths µ1 = µ3, ν1 = ν2, and κ2 = κ3. Comparing all

triple TDOA combinations for all
(

M
3

)

sensor-triples (i, j, k),
we end up with TDOAs having two or more matching part-

ners, each associated with the same source and paths. Each

match increases the quality of all three TDOA partners.

Assuming that every source a is detected by at least 3
sensors – otherwise we could not localize it – we discard all

TDOAs with no matching partners. Theoretically, matching

TDOA triples of non-direct paths are possible, e.g. due to re-
flected sources, but they have in general a lower quality due

to lower correlation amplitudes and fewer partners and thus
might be rejected in the next step.

Again as before, sampled TDOA estimates won’t fit ex-
actly, so we propose to include a narrow smoothing window.

4.3. Combining triples to source vectors

In order to obtain all
(

M
2

)

TDOAs for each detected source,
TDOA triples are finally combined in the following way: The

triple of highest quality initializes the first source vector which

contains all TDOAs assigned to one source. We then search
for those remaining triples which share one common TDOA

with the initial one and assign the remaining two TDOAs to

the source vector, see Fig. 2. By continuing the search using
the extended source vector, more and more TDOAs will be

assigned to this source.

With the subset of remaining, not yet assigned TDOA

triples we form the next source vector like before and con-
tinue this process until each triple has contributed to at least

one source.

On the basis of the number of matching TDOAs, the num-

ber of matching triples, and their quality values, we can finally
calculate an overall quality for each source vector and use it

as a reliability measure for the existence of the corresponding
source.
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Fig. 2. Illustration of the combination algorithm: hatched

area is yet unknown, tA...F stand for any TDOA ta,ij,00.

In practical applications the source vectors might be in-
complete. For some subsequent algorithms of geometric po-

sition estimation, this could have an effect (e.g. for the choice

of reference sensor for [4]), for others (e.g. [3]) it doesn’t mat-
ter. Besides, some TDOAs still may be estimated according

to observation A2, if necessary.

5. SIMULATION RESULTS

To illustrate the performance of DATEMM, sensor signals
were simulated using the image method [11]. Several dif-

ferent setups were analyzed and show promising results.

In the following example two speech sources and five sen-
sors were randomly placed in a noise-free, small office room

having highly reflecting walls (T60 ≈ 0.3s). TDOAs were es-

timated from a time window of 40 ms, in which both sources
were active. In order to obtain high resolution TDOAs, the

sampling rate was 96 kHz. Fig. 3 shows the successful disam-

biguation of the 10 most dominant peaks in the cross-correla-
tion of one sensor pair.

A typical output of DATEMM is presented in Table 1.

The algorithm found four possible sources of different quality.
Obviously, the first two estimated source vectors correspond

well to the true source a = 2 and a = 1. The more unlikely
source vectors are partially due to image sources.

t

|rij(t)|
true source 1 true source 2

extrema: �� ���� ������

��

����

��

� �

Fig. 3. Example of a TDOA classification into echo path ,

non-matching triple , and direct path •
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