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Abstract—In LFMCW (linear frequency modulated continuous
wave) radar, there is a nonzero probability for mismatches to occur
under certain conditions. This probability strongly depends on the
modulation employed as well as on the distribution of targets in the
radar’s field of view, i.e. the application of the radar sensor. Hence to
reduce mismatches in a given application, an effective approach is to
carefully design the modulation used. Instead of utilizing extensive
simulations, we derive the distribution of mismatches analytically,
solely based on the modulation parameters and a given distribution
of targets. Based on that mismatch distribution, an application-
specific optimization of the modulation is feasible.

Index Terms—chirp radar, FMCW, mismatch mitigation, wave-
form design

I. INTRODUCTION

It is well known that LFMCW radar may cause target mis-

matches under certain conditions. Such mismatches can arise in

the frequency matching step of the signal processing chain and

may lead to so called ghost targets, if the remaining processing

steps (e.g. tracking) are not able to identify them as mismatches.

Most applications employing such a radar, however, are required

to be robust with respect to ghost targets and hence mismatches.

Especially in the field of automotive radar, there is an ongoing

extension of radar applications from driver assistance systems,

e.g. ACC (adaptive cruise control), to safety systems. Clearly,

those systems do have an increasing demand for highly reliable

sensor decisions and thus the avoidance of mismatches plays a

major role in the design of an LFMCW radar system.

As the probability of mismatches depends on the radar signal

modulation and the targets in the sensor’s field of view, a

good approach to reduce mismatch occurrence is to carefully

design the modulation used. In order to accurately estimate

the probability of mismatches in a given application, extensive

simulations based on target statistics are commonly necessary.

They search for an optimal modulation exhaustively and are

computationally demanding.

In this paper, we show how to analytically derive the probability

of mismatches at an arbitrary position of the so called distance-

velocity-plane, based on a given distribution of targets and for an

arbitrary modulation. The outline of this paper is as follows: In

section II, we briefly review the basic properties and equations of

the LFMCW radar. In section III, we derive the mismatch proba-

bility and give some extensions in section IV. Simulation results

for various target distributions and modulations are presented in

section V. Final conclusions are drawn in section VI.

II. LFMCW MODULATION

A. The LFMCW equation

We will not derive the basic equations of LFMCW here, as

there are many excellent books about this topic like [1]. The

most important equation is the so called LFMCW equation,

linking the target parameters to be estimated, distance d[m]

and relative radial velocity (negative for closing targets) v[ m

s
],

to the beat frequency f [Hz], defined as the difference between

the transmitted and the received frequency. The radar’s transmit

frequency is swept linearly as a function of time, with a slope of

s[ Hz

s
] and centered at the carrier frequency fc[Hz]. We call such

an up- or downsweep a frequency ramp, or simply a ramp. The

resulting beat frequency f is then given by

f =
2

c
(sd + fcv) =

2

c

[
s fc

]

︸ ︷︷ ︸

aT

[
d
v

]

︸ ︷︷ ︸

p

= aT p, (1)

where c is the speed of light. Equation (1) corresponds to a

straight line in the (dv)-plane

v = −
s

fc

d +
cf

2fc

, (2)

a so called (dv)-line. For an up- (positive slope) or downsweep

(negative slope) of the transmit frequency, the (dv)-line decays

or rises linearly. To determine the unknown target parameters

(d, v), a second ramp with a different slope is necessary. The

target is then located at the intersection of both (dv)-lines. In

general, when we use N ramps to measure M targets, the

target parameters are determined at the intersection of all (dv)-

lines. Approximate intersections have to be accounted for, too,

due to measuring errors in practice. The method to perform

the aforementioned search for intersections is called frequency

matching, refer to [2] or [3] for a brief introduction.

B. Frequency matching

No matter how many ramps are used in a modulation, it is

always possible to construct a pattern of M(≥ N) targets that

causes more than M intersections of N (dv)-lines. The result

is the occurrence of mismatches, refer to Fig. 1. This means,

N ramps are not always enough to determine M(≥ N) targets

uniquely, but there will be no mismatches if M < N .

mismatch

targets

(dv)-lines

Fig. 1. A mismatch for M ≥ N targets, here N = M = 5

It is reasonable to conjecture that, the more ramps we use in a

modulation, the smaller the probability of mismatches is. Yet,

to our knowledge, there have only been few attempts to study

theoretically the impact of the design of a modulation to mis-

matches. The optimal modulation from both points of view, target

detection and target parameter estimation, has been derived in [4]

utilizing the concept of mutual information. In [2], formulas for
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the mean number of mismatches for modulations with three or

four ramps are given, based on a uniform distribution of the

beat frequency. Upper bounds for the number of mismatches are

given in [5]. To optimize a modulation for a specific application,

however, it is desirable to know the distribution of mismatches

as accurate as possible.

III. DERIVATION OF THE MISMATCH PROBABILITY

A. Preparatory remarks

In this section, we derive the probability of mismatch which

occurs at an arbitrary position of the (dv)-plane, based on a given

modulation and distribution of targets. First we introduce some

definitions:

• The a priori probability density function (pdf) for the

occurrence of a target at a specific position of the (dv)-

plane is modeled by the bivariate density function of the

continuous random variables distance D and relative radial

velocity V :

pdv :=
∂2

∂d∂v
P (D ≤ d, V ≤ v) (3)

Throughout the paper, P (X) is used to denote the prob-

ability for the occurrence of event X and P (X, Y ) :=
P (X∩Y ). We partition the (dv)-plane into (not necessarily)

rectangular cells ζ of size ∆d and ∆v and the probability

for a target to occur inside the cell ζ0 centered at (d0, v0)
is

Pd0v0
= pd0v0

∆d∆v, (4)

refer to Fig. 2. pdv can either be estimated from real mea-

surements or modeled based on some a priori knowledge of

the target distribution.

d

v

d0

v0 ∆v

∆d

Fig. 2. (dv)-cell ζ0 at (d0, v0)

• According to (1), the N -ramp modulation is described by

A :=

⎡

⎢
⎣

aT
1

...

aT
N

⎤

⎥
⎦ =

2

c

⎡

⎢
⎣

s1 fc

...
...

sN fc

⎤

⎥
⎦ . (5)

In addition, we define the following events for an arbitrary (dv)-

cell ζ0 at (d0, v0):

• T : A target resides in ζ0.

• S: An intersection of (dv)-lines is detected in ζ0.

• F : A mismatch occurs in ζ0.

A mismatch occurs in ζ0 if all N (dv)-lines of different slopes

intersect inside ζ0 but no target resides there, refer to Fig. 1. If

multiple targets reside inside the same (dv)-cell, they are treated

as a single target in this paper, since a separation could only be

achieved by other methods like angle estimation which is not

considered here.

With these definitions, the frequency matching of the LFMCW

radar can be viewed as a binary erroneous channel, with the

mismatch illustrated by the bold line in Fig. 3. Obviously, the

P (S|T )

P (S|T )

P (S|T
) P (S|T )

T
P (T )

T
P (T )

S

S

Fig. 3. Frequency matching as a binary erroneous channel

probability for the occurrence of a mismatch in ζ0 can be

expressed as

P (F ) = P (T , S) = P (T )P (S|T ) =: PFA(ζ0). (6)

X denotes the complementary event of X and P (X|Y ) is the

probability of X conditioned on Y .

B. Base formula

In this section, we derive the base formula expressing the

probability of mismatch in an arbitrary cell ζ0 as a function

of both the modulation and target distribution. We aim to derive

PFA(ζ0) as a function of the modulation A, target pdf pdv and

detection properties PD,i and PFA,i with

• PD,i: Probability of spectral detection in ramp i, i.e. the

probability that a truly existing target beat frequency is

detected in the spectrum of ramp i.
• PFA,i: Probability of spectral false alarm in ramp i, i.e. the

probability that a truly not existing target beat frequency is

detected in the spectrum of ramp i.

For this purpose, we need two new events for ramp i:

• Ti: A beat frequency exists in the spectrum of ramp i whose

corresponding (dv)-line passes the ζ0 cell.

• Si: A beat frequency is detected in the spectrum of ramp i
whose corresponding (dv)-line passes the ζ0 cell.

Under the assumption that only intersections of all N (dv)-

lines are regarded as a target (an extension for lower intersection

orders is given in section IV-B), we have

S =

N⋂

i=1

Si with P (S) �=

N∏

i=1

P (Si), (7)

as the events Si and Sj are not independent in general. This is,

for example, the case if a target resides in cell ζ0. Independence

is guaranteed only if the event T is true and all spectral false

alarm detections are independent. Then we have

P (S|T ) = P

((
N⋂

i=1

Si

)

|T

)

=
N∏

i=1

P (Si|T ). (8)

Additionally, T ⊂
⋂N

i=1
Ti as shown in Fig. 1. This means,

the presence of N different (dv)-lines passing the same ζ0-cell

does not necessarily imply that a target resides inside that cell.

It follows

T ⊃

N⋂

i=1

Ti =

N⋃

i=1

Ti ⊃ Ti and Ti ∩ T = Ti ∀i.

(9)

Now we introduce a new discrete random variable

• Ki: Number of targets whose (dv)-lines pass the ζ0-cell in

ramp i.

We also define a quantized (dv)-line in the (dv)-plane as

Ri := {ζ | ζ passed by the (dv)-line of ramp i through ζ0}

= {(d, v) | v ≈ −
si

fc

d + (v0 +
si

fc

d0)}, (10)
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Fig. 4. Sketch of quantized (dv)-line Ri

see Fig. 4. The actual calculation of Ri is simpler and differs

slightly from the illustration in Fig. 4: All (dv)-cells are re-

garded as part of the quantized (dv)-line Ri, whose frequencies

differ from the center frequency of cell ζ0 less than a fixed

amount ∆fi. In our implementation, ∆fi was chosen to be

∆fi = 1.2/τi [FFT bin/s], where τi is the duration of ramp i.
This means, two beat frequencies in spectrum i with a frequency

difference larger than ∆fi cannot contribute to the same (dv)-

line. Following (8), we continue with

P (Si|T ) =
P (Si, T )

P (T )
=

P (Si, Ti, T ) + P (Si, Ti, T )

P (T )
(11)

and consider that

P (T ) = 1 − Pζ0 = 1 − Pd0v0
, (12)

P (Ti) = P (Ki = 0) =
∏

ζ ∈ Ri

(1 − Pζ) . (13)

Equation (13) follows from the fact that the events Ti and Ki > 0
are equivalent. It follows

P (Si, Ti, T )

P (T )

(9)
=

P (Si, Ti)

P (T )
= P (Si|Ti)
︸ ︷︷ ︸

PFA,i

P (Ti)

P (T )

(12),(13)
= PFA,i

∏

ζ ∈ Ri \ ζ0

(1 − Pζ) , (14)

P (Si, Ti, T )

P (T )
=

1

P (T )

∞∑

k=1

P (Si, Ki = k, T )

=
∞∑

k=1

P (Si|Ki = k, T )P (Ki = k|T ).

(15)

We realize that the first term in (15) can be rewritten as

P (Si|Ki = k, T ) = 1 − P (Si|Ki = k, T )

= 1 − (1 − PD,i)
k , (16)

if we assume that the miss detections of the Ki = k beat

frequencies are independent. With the approximation

P (Ki > 1) ≈ 0, (17)

we finally obtain

P (Si, Ti, T )

P (T )

(16)
=

∞∑

k=1

(

1 − (1 − PD,i)
k
)

P (Ki = k|T )

(17)

≈ PD,iP (Ki = 1|T )

= PD,i

∑

ζ1 ∈ Ri \ ζ0

Pζ1

∏

ζ2 ∈ Ri \ {ζ0,ζ1}

(1 − Pζ2)

= PD,i

∑

ζ1 ∈ Ri \ ζ0

Pζ1

1 − Pζ1

P (Ti)

P (T )
. (18)

If necessary, Eq. (18) can be further improved by taking addi-

tional terms with Ki ≥ 2 into account.

With this, all parts needed to compute PFA(ζ0) have been derived:

PFA(ζ0)
(6)
= P (T )P (S|T )

(8)
= P (T )

N∏

i=1

P (Si|T )

(11),(14),(18)

≈ P (T )

N∏

i=1

P (Ti)

P (T )

·

⎛

⎝PFA,i + PD,i

∑

ζ ∈ Ri \ ζ0

Pζ

1 − Pζ

⎞

⎠

(12),(13)
= (1 − Pζ0)

N∏

i=1

⎛

⎝
∏

ζ ∈ Ri \ ζ0

(1 − Pζ)

⎞

⎠

·

⎛

⎝PFA,i + PD,i

∑

ζ ∈ Ri \ ζ0

Pζ

1 − Pζ

⎞

⎠ .

(19)

First observations about the base formula (19) are:

• The larger the number of ramps N is, the lower the value

of PFA(ζ0) will be.

• The larger the false alarm probability PFA,i is, the larger the

value of PFA(ζ0) will be. The same also applies to PD,i. The

reason is that an increased number of detected (dv)-lines

makes a mismatch more probable.

• A large value of PFA(ζ0) is attained for such (dv)-cells,

where all N quantized (dv)-lines Ri pass through regions

of the target pdf that have a high probability for target

occurrence.

• Under the assumption PFA,i = 0 ∀ i, a zero mismatch

probability can be achieved for those cells, where it is

possible to design at least one ramp which corresponding

quantized (dv)-line has no intersection with the support of

the target pdf. This will become more evident in section V.

IV. EXTENSIONS

In this section, we derive three useful extensions of the base

formula (19).

A. Missing IQ-mixer

If the radar under consideration does not use an IQ-mixer,

minor adaptations have to be applied to the base formula. Without

IQ-mixer, the sign of a beat frequency is unknown, forcing us to

take its negative value into account as well in the frequency

matching. This leads to an adapted definition of a (dv)-line

passing the ζ0-cell. Without IQ-mixer, the single (dv)-line in (10)

becomes two parallel (dv)-lines as illustrated in Fig. 5. Thus the

event Ti can now be caused by (dv)-cells on either (dv)-lines

with the beat frequency ±f .

Obviously, PFA(ζ0) is increased as there are more cells that cause

d

v

d0

v0

f

−f

ζ0-cell

R
IQ
i

Fig. 5. Sketch of quantized (dv)-line Ri for missing IQ-mixer



the same absolute value of beat frequency as ζ0. Formally, the

quantized (dv)-line Ri passing the ζ0-cell has to be changed to

RIQ
i → RIQ

i =

{

(d, v) | v ≈ −
si

fc

d ± (v0 +
si

fc

d0)

}

, (20)

in comparison to (10). No other changes are necessary in (19).

B. Arbitrary intersection order

In a real radar system there is no ideal detection, i.e. PD,i < 1
and PFA,i > 0. The probability of successful detection of all

N frequencies of a real target is
∏N

i=1
PD,i, if we assume the

probability of detection in different spectra to be independent.

If PD,i is significantly smaller than one, the overall probability

of detection degrades noticeably. For a modulation with N = 4
ramps and PD,i = 0.9, for example, all four beat frequencies of

a real target will be detected in roughly two out of three cycles

only. The value of PD,i can be increased, of course, but only

at the cost of an increased false alarm probability PFA,i. Thus

intersections of a smaller number of (dv)-lines than N should

be considered as valid targets as well. We call this number the

intersection order.

Below we extend the base formula (19) to account for a minimum

intersection order Nmin (2 ≤ Nmin ≤ N ). This introduces some

changes in (7) and (8), where the single events Si are combined

to form the desired event S. For an exemplary modulation with

N = 3 ramps and a minimum intersection order of Nmin = 2,

the event S for detection of an intersection becomes

S = S1S2S3 ∪ S1S2S3 ∪ S1S2S3 ∪ S1S2S3

and thus

P (S) = P (S1S2S3)

+P (S1S2S3) + P (S1S2S3) + P (S1S2S3).

Hence Eq. (8) is changed to

P (S|T ) =
N∑

q=Nmin

⎧

⎨

⎩

∑

Ψ={1,...,N}q

[(
∏

i ∈Ψ

P (Si|T )

)

·

⎛

⎝
∏

j ∈{1,...,N}\Ψ

P (Sj |T )

⎞

⎠

⎤

⎦

⎫

⎬

⎭
, (21)

where we used Ψ = {1, . . . , N}q as a shortcut for any subset

of {1, . . . , N} with q elements.

C. Varying frequency detection performance

In the base formula (19), both PD,i and PFA,i are assumed to

be constant. A more realistic approach is to model both PD,i and

PFA,i as a function of various sensor and signal parameters like

• Frequency detection algorithm.

• Signal-to-noise ratio (SNR), in particular varying SNR over

frequency due to street clutter.

• Automatic gain control (AGC) of the sensor amplifier.

• Power leakage from Tx to Rx.

This will be done in the future.

V. SIMULATION RESULTS

To give an impression about the mismatch probability, simu-

lations have been carried out for different target pdfs using the

base formula (19) and it’s extensions. All target distributions

are defined for 0m ≤ d ≤ 250m and −60 m

s
≤ v ≤ 30 m

s

and quantized in rectangular cells of size ∆d = 0.25m and

∆v = 0.25 m

s
.

modulation ramp slope [MHz/ms] duration [ms]

A 1,2 ± 150.0 1.00
3,4 ± 3.0 7.50

B 1,2 ± 150.0 1.00
3,4 ± 75.0 2.00

C 1,2 ± 150.0 1.00
3 75.0 2.00

D 1,2 ± 150.0 1.00
3,4 ± 75.0 2.00
5 3.0 7.50

TABLE I
PARAMETERS OF MODULATIONS A, B, C AND D

A. Modulation parameters

Four different modulations are used. Their parameters are

given in Table I. All ramps are centered at fc = 76.5GHz.

A FFT of length 512 is applied to generate the spectra. The

part of the (dv)-plane that can be sensed with the respective

modulation is depicted in Fig. 6 for modulation A and B. Each

plot shows the field of view as the non-hatched region of the (dv)-

plane. For each modulation, there are as many hatched regions

as the number of ramps (in Fig. 6(a), one of the hatched regions

is very small and another one is totally outside the considered

rectangular (dv)-plane). Each hatched region at the right-hand

side is bounded by a (dv)-line of one frequency ramp for either

f = fmax or f = fmin, depending on the sign of the slope s.

The lines for f = 0Hz are shown at the left-hand side. Note

that a rising frequency ramp (positive slope) corresponds to a

falling (dv)-line according to (2) and vice versa. Both modulation

A and B consist of four ramps where the first two ramps are

identical. Modulation C consists of three ramps and is derived

from modulation B by dropping the fourth ramp. Modulation

D consists of five ramps and is derived from modulation B by

adding the third ramp of modulation A.

0 250d[m]
-60

30

v[ m

s
]

(a) Modulation A

0 250d[m]
-60

30

v[ m

s
]

(b) Modulation B

Fig. 6. Field of view of modulations A and B

B. Experiment 1: Ideal case

In the first experiment, the target distribution is assumed to be

constant, i.e. targets are uniformly distributed in the considered

rectangular (dv)-plane in Fig. 6. In addition, we use the following

ideal settings:
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Fig. 7. Mismatch probability of experiment 1

• PD,i = 1 and PFA,i = 0 ∀ i
• IQ-mixer present

• Intersection order Nmin = N .

Fig. 7 shows the calculated probabilities of mismatch for mod-

ulation A and B, overlayed with the field of view of each

modulation. Each plot uses an individual linear color scale from

blue to dark red to represent an increasing mismatch probability.

The color white is reserved to show a zero mismatch probability.

The hatched part of the (dv)-plane is white in this case since

it is not observable by all N ramps due to Nmin = N . For a

quantitative comparison, Table II contains the numerical values

of the maximum and average mismatch probability over all

observable (dv)-cells of this experiment (and five additional ones

reported later). We make the following observations:

• PFA(ζ0) > 0 in the observable (dv)-plane, as the support of

the target pdf covers the whole (dv)-plane.

• The maximum and average mismatch probability of mod-

ulation A and B are of the same order. Modulation C

with three ramps achieves a higher and modulation D with

five ramps attains a lower value of PFA(ζ0). This supports

the statement in section III-B that adding further ramps

decreases the mismatch probability of a modulation.

• For a uniform distribution of targets, the region with the

highest PFA(ζ0) is bounded by those (dv)-lines that are

caused by targets located at the four corners of the rect-

angular (dv)-plane. This is illustrated by the dotted lines

in Fig. 7(a) and 7(b). Note that for each corner only two

(dv)-lines are visible. The reason is that the factor P (Si|T )
from Eq. (8) remains constant inside these bounds, as the

number of (dv)-cells on the quantized (dv)-line Ri remains

unchanged.

C. Experiment 2: Nonideal frequency detection

The second experiment uses the same simulation conditions

as in experiment 1, i.e. uniform target pdf, IQ-mixer, Nmin =
N , except for a nonideal frequency detection with PD,i = 0.8
and PFA,i = 10−3 ∀ i. As the overall appearance of PFA(ζ0)
does not change much in comparison to Fig. 7, we only inspect

the numerical values of PFA(ζ0) in Table II. Note that these

values are normalized to those of experiment 1. We recognize

modulation
experiment normalized to A B C D

maximum PFA(ζ0)

1 10−2 0.13 0.22 1.00 0.04
2 exp. 1 0.43 0.41 0.52 0.34
3 exp. 1 3.23 1.45 1.47 2.35
4 exp. 1 18.54 15.32 11.96 20.43

5 10−2 0.62 0.21 0.99 0.08
6 exp. 5 1.00 1.05 1.03 1.00

average PFA(ζ0)

1 10−4 0.69 1.00 5.28 0.17
2 exp. 1 0.44 0.42 0.51 0.33
3 exp. 1 2.24 1.19 1.16 1.67
4 exp. 1 19.00 16.83 12.58 21.00

5 10−4 0.14 0.31 1.92 0.02
6 exp. 5 1.24 1.18 1.13 1.82

TABLE II
MAXIMUM AND AVERAGE MISMATCH PROBABILITY

that both the maximum and average value of PFA(ζ0) are reduced

to roughly 42% of experiment 1 for modulation A and B as well

as 52% and 34% for modulation C and D, respectively. This is

mainly due to the term P Nmin

D,i ≈ 0.41, 0.51, 0.33 in Eq. (19) for

PD,i = 0.8 and Nmin = 4, 3, 5 for modulation A/B, C, D. Hence,

a lower frequency detection probability reduces the mismatch

probability due to a reduced number of detected (dv)-lines.

D. Experiment 3: Missing IQ-mixer

The third experiment is identical to the first one except for

a missing IQ-mixer. In this case, we have to use the extension

of the base formula in Eq. (20). Fig. 8 shows the results of

0 250d[m]
-60

30

v[ m

s
]

(a) Modulation A

0 250d[m]
-60

30

v[ m

s
]

(b) Modulation B

Fig. 8. Mismatch probability of experiment 3

this experiment. As expected, Table II indicates an increased

mismatch probability. The increase is larger for those modula-

tions that exploit the benefits of an IQ-mixer more efficiently, i.e.

modulations with shallow ramps (small |s|) such as modulation A

and partly D. Additionally, we observe the following phenomena:

• The modulation design has a stronger influence on mismatch

probability for a missing IQ-mixer.



• If an IQ-mixer is missing, PFA(ζ0) is considerably raised

in those regions, where both f and −f are observable. We

already gave the reason in section IV-A, namely that two

parallel (dv)-lines have to be accounted for in this case.

These regions are located symmetrically around the (dv)-

lines with f = 0Hz. Their borders are illustrated by the

dotted lines in Fig. 8(a) and 8(b).

E. Experiment 4: Lower intersection order

The fourth experiment investigates the effect of a lower

intersection order with Nmin = N − 1. The other simulation

conditions are identical to experiment 1. The plots of PFA(ζ0)
in the (dv)-plane are not shown here since they look similar to

those in Fig. 7. One noticeable difference is that areas hatched

only once in Fig. 6 become now visible, since a target detection

requires now an intersection of N − 1 (dv)-lines only. Table

II shows a large increase of PFA(ζ0) as predicted by (21).

Interestingly, though the modulation C now allows for matches

of two ramps, the values did not increase as much as for the

other modulations. The reason is that if the number of ramps

N decreases, the number of different submodulations decreases,

too. With the present setting of Nmin = N − 1, there are N
submodulations that add to the overall value of PFA(ζ0), refer

to Eq. (21). Hence, for an intersection order of Nmin < N , the

relative increase of PFA(ζ0) rises with the number of ramps of a

modulation. Other observations are:

• A moderate increase in detection performance of real targets

(roughly P N−1

D versus P N
D ) induces a large increase in

mismatch probability.

• The level of increase of mismatch probability varies for dif-

ferent modulations. Hence it seems fruitful to also optimize

the submodulations, i.e. the N submodulations containing

N − 1 ramps each.

F. Experiment 5 and 6: ACC target distribution

In experiment 5, we use the same ideal settings as in experi-

ment 1 and a target pdf that is typical for the ACC application

on highways. The target pdf is plotted in Fig. 9 and consists

of two modes, one for stationary targets (ST) at the mean

negative velocity of the ego vehicle (vST ≈ −25.2 m

s
) and one for

moving targets (MT) at vMT ≈ 0 m

s
. The distribution is explained

in more detail in [3]. Fig. 10 shows the computed mismatch

probability. Obviously, this distribution is more sensitive to

modulation design than the uniform target pdf. Table II shows

that modulation B has a smaller maximum probability, yet a

much larger mismatch probability on average than modulation

A.

In the final experiment 6, the ACC target pdf is combined with a

missing IQ-mixer. Table II shows a moderate increase of PFA(ζ0)
in comparison to experiment 5. Our conclusions are:

MT

ST

0 250d[m]

-60

30

v[ m

s
]

Fig. 9. Target distribution for ACC scenarios
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Fig. 10. Mismatch probability of experiment 5

• With the modulation adapted to the target pdf, a mismatch

probability of zero can be achieved for a large part of the

(dv)-plane, refer to Fig. 10(a).

• A disadvantage in Fig. 10(a) is, however, that all mis-

matches happen in the vicinity of the real targets. This

makes the detection of isolated mismatches during the

subsequent tracking more difficult. By taking tracking and

isolated mismatches into account, modulation B is the better

choice in comparison to modulation A.

VI. CONCLUSION

In this paper, we have derived a closed-form base formula for

the mismatch probability in LFMCW radar based on a given

target distribution and modulation parameters. We have also

developed various extensions to the base formula to account for

many nonidealities in the modulation design in practice. We pre-

sented and compared simulation results for various parameters,

settings and demonstrated the usefulness of our formulas. The

framework seems very promising to ease the optimization of

LFMCW modulation with respect to the mismatch probability,

what we will further investigate in future work.
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