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ABSTRACT

Multiple-Input-Multiple-Output (MIMO) radars with colocated
transmit and receive antennas offer the advantage of a larger (virtual)
aperture compared to a conventional Single-Input-Multiple-Output
(SIMO) radar. Hence a higher accuracy of the estimated direction
of arrival (DOA) of a target can be achieved. In general, the ac-
curacy of DOA estimators decreases in a MIMO radar if the target
moves relative to the radar, because the motion causes an unknown
phase change of the baseband signal due to the Doppler effect. We
compute the Cramer-Rao bound (CRB) of DOA estimation of a
non-stationary target for a MIMO radar with colocated antennas for
a general time division multiplexing (TDM) scheme. This allows
a quantitative comparison of different MIMO and SIMO radars.
Moreover, we derive an optimal TDM scheme such that the CRB
is as small as in the stationary case. The results are confirmed by
simulations.

Index Terms— MIMO Radar, Cramer-Rao Bound, Time Divi-
sion Multiplexing, DOA Estimation

1. INTRODUCTION

MIMO radars have been intensively studied recently. Compared to
a conventional phased array or SIMO radar, they offer several ad-
vantages, e.g. a more flexible transmit beampattern design, a higher
number of detectable targets and a higher accuracy in parameter esti-
mation, especially in DOA estimation [1, 2, 3]. High performance in
DOA estimation, despite of a small number of antennas and a small
geometric aperture, is important in automotive radars for example
[4].

The CRB is a lower bound on the covariance matrix of all unbi-
ased estimators, independent of the used estimation algorithm. It en-
ables to compare the maximum accuracy of different radar systems.
The CRB has already been derived for different settings. The CRB
of DOA estimation for SIMO radar was derived in [5] and an ex-
tended version for non-local errors has been established in [6]. The
investigation of the CRB for non-stationary targets is given in [7, 8],
and for SIMO radar with only one receiving channel in [9]. The
CRB of DOA estimation with a MIMO radar for general transmitted
signals has been computed in [1] and [3] under the assumption of sta-
tionary targets. The authors of [10, 11] investigate target parameter
estimation of moving targets and different transmission schemes in
ground moving target indication, and in [12, 13] the CRB for DOA
and Doppler estimation is derived for a MIMO radar with simulta-
neously transmitting antennas.

In general, MIMO radars require a more complex hardware than
SIMO radars. They can be realized by code, frequency or time di-
vision multiplexing. All multiplexing variants have several advan-
tages and disadvantages. We focus in this paper on TDM-MIMO

radars, since they are easier to implement compared to more com-
plicated coding schemes. Moreover, since the antennas do not trans-
mit simultaneously, the transmitted signal can be kept as in a SIMO
radar, e.g. by using a linear frequency modulated continuous wave
(LFMCW). Experimental investigation of a TDM-MIMO radar was
reported in [14, 15], but quantitative comparisons to SIMO radars
in the non-stationary case, especially in DOA estimation, are still
missing.

We fill this gap by investigating the DOA estimation of a moving
target by computing the CRB of a TDM-MIMO radar. Note that
since the signals are transmitted successively, the resulting baseband
signal model has a different structure than that in [12, 13]. This
CRB enables us to compare TDM-MIMO radars with different TDM
schemes and SIMO radars for moving targets.

In a SIMO radar, the DOA can be estimated by analyzing the
phase relation of the baseband signal of the receiving channels. In a
MIMO system, the phase relation between the transmitting channels
is used as well which makes it possible to construct a virtual array
with a larger aperture than the receiving or transmitting array alone
[16]. In the non-stationary case, the target is moving, resulting in
another phase change of the baseband signal. This phase change has
to be estimated as well, in order to exploit the phase relation between
the transmitting channels. We derive the CRB for this situation.

We present the signal model in Section 2 and derive the CRB in
Section 3. In Section 4, the implications of the CRB are discussed
and an optimal TDM scheme is derived. The theoretical results are
confirmed by simulations in Section 5.

The following notations are used in this paper: 1K is a vector of
length K with all elements equal 1, and I is the identity matrix. In
addition, ∗ stands for conjugate, T stands for transpose, H stands for
conjugate transpose, y = exp(x) is understood as an element-by-
element operation yi = exp(xi). ⊗ is the Kronecker tensor product
and � the entrywise Hadamard product.

2. SIGNAL MODEL

We consider a colocated MIMO radar consisting of a linear receiver
(RX) and transmitter (TX) array with isotropic antennas. The mov-
ing target is modeled as a point source and the transmitted signal is
narrowband. The positions of the NRX RX antennas and NTX TX
antennas are given in dRX ∈ RNRX and dTX ∈ RNTX , respectively,
in units of λ/2π where λ is the carrier wavelength. The positions of
the TX antennas in the sequence in which they transmit are given in
dPulse ∈ RNPulse , i.e. some TX antennas can occur several times in
dPulse, if they transmit several pulses. NPulse is the number of trans-
mitted pulses in a cycle. The time instances at which the antennas
transmit in a cycle are given in t ∈ RNPulse . This means, the antenna
with position dPulse

i transmits at time ti, see Fig. 1 for an example.
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Fig. 1. Example of a TDM scheme: 2 transmitters transmitting at
times t = [t1, t2, t3]T . Here, dPulse = [dTX

1 , dTX
2 , dTX

1 ]T .

The antenna positions of the virtual array of the TDM-MIMO
radar is given by

dVirt := 1NPulse
⊗ dRX + dPulse ⊗ 1NRX

∈ RNVirt (1)

with NVirt = NPulseNRX. Note that the transmitting sequence is al-
ready incorporated in dPulse. The steering vector of the virtual array,
which incorporates the phase change of the baseband signal of all
transmitter-receiver combinations, is given by

a(u) = exp(j · dVirtu) = exp(j · dPulseu)⊗ exp(j · dRXu). (2)

Here u = sin(Θ) is the electrical angle with Θ being the DOA of
the target measured perpendicular to the array axis. We assume a
number of L measurement cycles where one cycle consists of NPulse

pulses. The complex baseband signal X(l) ∈ CNVirt of cycle l is
given as

X(l) = exp(jγωd)�a(u)
1√
NPulse

s(l)+N(l), l = 1, . . . , L (3)

with the unknown, deterministic, complex target signal s(l) ∈ C and

γ = t⊗ 1NRX
. (4)

The term exp(jγωd) incorporates the phase change of the baseband
signal due to the motion of the target between successive transmis-
sion pulses with the Doppler frequency ωd, normalized to the units
of t. The factor 1√

NPulse
adjusts the signal strength of one cycle, con-

sisting of NPulse pulses, according to a constant transmitting energy.
N(l) is additive noise. With the definition of a new steering vector

b(u, ωd) := exp(jγωd)� exp(jdVirtu), (5)

the signal model can be written as

X(l) = b(u, ωd) · 1√
NPulse

s(l) +N(l). (6)

Note that this signal model does not satisfy the sufficient condi-
tions of space-time separability in [17] in contrast to the SIMO radar
model in [8]. This is due to the coupling of the transmitting time ti
to the position dPulse

i of the transmitter. Hence we cannot conclude
that the DOA and Doppler frequency estimations are decoupled in
general.

We make the following assumptions:

1. N(l) is circular complex Gaussian with zero mean, spa-
tially and temporally uncorrelated with E

(
N(l) NH(m)

)
=

δl,m σ2I.

2. The target’s distance is much larger than the geometric di-
mension of the radar (far-field). Hence the radar receives a
plane wave and the radar cross section as well as the DOA Θ
of the target is the same for all antennas.

3. The DOA Θ does not change significantly during the com-
plete measurement, i.e. the change is much smaller than the
accuracy of the radar system and can be ignored.

4. The target moves with constant relative radial velocity. Hence
the Doppler frequency ωd is constant.

As an example, consider a radar in an automobile with a carrier fre-
quency of 77 GHz, a geometrical array size of A = 4 λ = 15.6 mm
and L = 1 cycle with a cycle time of 5 ms. The target is a car at a ra-
dial distance r = 20 m on the neighboring driving lane with a lateral
distance of 4 m, which corresponds to a DOA Θ = 11.8◦. It is mov-
ing with a relative velocity v = 50 km/h. During the cycle the phase
change due to the Doppler effect is 34.9 · 2π, which is significantly.
The geometrical size of the radar is much smaller than the radial dis-
tance, A � r, hence the far-field assumption is fulfilled. The DOA
changes during the measurement about 4.2 · 10−2 ◦, which is much
smaller than the typical accuracy of such a radar system. The radial
velocity changes by 1.5 · 10−2%, which is negligible.

3. CRAMER-RAO BOUND

We are interested in the Cramer-Rao bound J−1 for the unknown
parameter vector Θ = [u, ωd, s(1), . . . , s(L), σ2]T . The CRB is a
lower bound for the covariance matrix of any unbiased estimator Θ̂
[18]

E
[
(Θ̂−Θ)(Θ̂−Θ)T

]
≥ J−1 (7)

where J = [Jij ] is the Fisher Information Matrix (FIM). It can be
computed by

Jij = E
[
∂ ln f(x; Θ)

∂Θi

∂ ln f(x; Θ)

∂Θj

]
(8)

where f(x; Θ) is the likelihood of Θ given the observation x. We
compute the part of J−1 corresponding to u, ωd. With the result of
[19] adapted to our notations, this part of the FIM is given by

J =
2 L

σ2

σ2
s

NPulse
Re (C) (9)

with

C = DHP⊥b D, (10)

D =

[
∂b(u, ωd)

∂u
,

∂b(u, ωd)

∂ωd

]
, (11)

P⊥b = I− b(bH b)−1bH , (12)

σ2
s =

1

L

L∑
l=1

|s(l)|2. (13)

After some computations, the FIM can be expressed as

J = 2 L NRX
σ2
s

σ2
·
[

VarS(dVirt) CovS(dVirt, γ)

CovS(dVirt, γ) VarS(γ)

]
(14)



using the following abbreviations

sample mean x̄ := ES(x) :=
1

K

K∑
k=1

xk, (15)

sample covariance CovS(x, y) :=
1

K

K∑
k=1

(xk − x̄)
(
yk − ȳ

)∗
,

(16)

sample variance VarS(x) := CovS(x, x) (17)

for vectors x, y ∈ CK . One can show that

VarS(dVirt) = VarS(dRX) + VarS(dPulse), (18)

VarS(γ) = VarS(t⊗ 1NRX
) = VarS(t), (19)

CovS(dVirt, γ) = CovS(dPulse, t). (20)

Using this, (14) reads

J = 2 L NRX
σ2
s

σ2
·
[

VarS(dRX) + VarS(dPulse) CovS(dPulse, t)
CovS(dPulse, t) VarS(t)

]
.

(21)

Inverting the FIM J, assuming det(J) 6= 0, yields

J−1 =
1

2 L NRX

σ2

σ2
s

· 1(
VarS(dRX) + VarS(dPulse)

)
VarS(t)−

(
CovS(dPulse, t)

)2
·
[

VarS(t) −CovS(dPulse, t)
−CovS(dPulse, t) VarS(dRX) + VarS(dPulse)

]
. (22)

The element CRBu of J−1 corresponding to the electrical angle u
equals

CRBu =
[
J−1]

11
=

1

2 L

1

S

1

U
(23)

with

S :=
σ2
s

σ2
·NRX, (24)

U := VarS(dRX) + VarS(dPulse)−
(
CovS(dPulse, t)

)2
VarS(t)

. (25)

S denotes the overall SNR of the radar. The term U depends on the
sample variance of the RX antenna positions in dRX, the sample vari-
ance of the TX antenna positions in dPulse as well as on the sample
covariance between dPulse and the transmitting time instances t.

4. DISCUSSION

4.1. Comparison

We compare the CRB of the electrical angle CRBu in (23) to the
CRB using a SIMO radar and to that of a stationary target CRBstat

using a MIMO radar.
First we compute the CRB of the electrical angle for the SIMO

radar CRBSIMO. We use the model (6) and consider only one trans-
mitting antenna at position dTX sendingNPulse pulses and set dPulse =
[dTX, dTX, . . . ]T . Using (23) results in

CRBSIMO =
1

2 L

1

S

1

USIMO
, (26)

USIMO = VarS(dRX). (27)

This coincides with the CRB for the SIMO radar for a stationary
target computed in [6]. Hence the movement of the target has no
influence on the CRB in this case. Note that we have not taken the
beamforming gain of a SIMO radar into account, i.e. sending the
same signal phase shifted with several transmitting antennas to focus
to a certain region of DOA, since it requires a priori knowledge of
the target’s DOA. The CRB for such a scenario is derived in [1] and
[20].

For a MIMO radar, the CRB of the electrical angle of a sta-
tionary target CRBstat can be derived by using the model (6), setting
ωd = 0 and computing the CRB of the unknown parameter u only.
This coincides with the model in [6] by replacing the RX antenna
positions by the virtual array. CRBstat is given by [6]

CRBstat =
1

2 L

1

S

1

Ustat
, (28)

Ustat = VarS(dVirt) = VarS(dRX) + VarS(dPulse). (29)

Hence CRBstat depends on the positions of the TX antennas in dPulse,
but not on the sequence in which they transmit.

The CRBs CRBu,CRBSIMO and CRBstat differ in U,USIMO and
Ustat. Using (25) we write

U = VarS(dRX) + VarS(dPulse)− p (30)

with the penalty term

p :=

(
CovS(dPulse, t)

)2
VarS(t)

. (31)

By the Cauchy-Schwarz inequality,

0 ≤ p ≤ VarS(dPulse) (32)

can be shown for any dPulse and t. Therefore

CRBSIMO ≥ CRBu ≥ CRBstat. (33)

If p = VarS(dPulse), CRBu = CRBSIMO. The MIMO radar has no
benefit in the accuracy of DOA estimation compared to the SIMO
radar. If p = 0, CRBu = CRBstat, i.e. the movement of the target
has no impact on the CRB and the whole virtual aperture can be used
for the DOA estimation. Hence it is crucial for DOA estimation to
choose an optimal TDM scheme to maximize U .

Note that the TDM scheme depends both on the position and se-
quence dPulse of the selected TX antennas and the time instants t for
transmission. It is characterized by the parameter vector ϑTDM :=
[(dPulse)T , tT ]T . Therefore, we have to maximize U over ϑTDM. De-
pending on the radar application, we can maximize U by varying
dPulse for a fixed t or by varying t for a fixed dPulse or by varying both
dPulse and t.

Below we present two TDM schemes which reach the two
bounds for CRBu in (33).

4.2. Bad Time Division Multiplexing

The worst TDM schemes are characterized by dPulse = c1t + c2
with constants c1, c2. In this case, p = VarS(dPulse) and CRBu =
CRBSIMO. This is, for example, the case if one uses a uniform linear
array (ULA) of TX antennas which transmit in the order of their
geometric arrangement at equally spaced time instants.



4.3. Optimal Time Division Multiplexing

A TDM scheme with the parameters dPulse and t is optimal if CRBu

in (23) is minimized or equivalently the expression U in (25) is max-
imized. This can be achieved by maximizing VarS(dPulse) and mini-
mizing |CovS(dPulse, t)| (hopefully to zero) at the same time. Below
we show one such example under the following conditions: The po-
sitions of RX antennas dRX and TX antennas dTX are given and fixed.
Furthermore, the TX antennas transmit at uniformly spaced time in-
stances, i.e. t ∝ [0, 1, . . . , NPulse − 1]T . Then the optimal value of
dPulse is given by

dPulse,opt = arg max
dPulse

VarS(dPulse)−
(
CovS(dPulse, t)

)2
VarS(t)

. (34)

VarS(dPulse) is maximized if only the most left and most right TX
antennas with the position dTX

min and dTX
max are used and both of them

occur equally often in dPulse,opt. |CovS(dPulse, t)| is minimized to zero
for a cycle of NPulse = 4 pulses if e.g.

dPulse,opt =
[
dTX

min, d
TX
max, d

TX
max, d

TX
min

]T
. (35)

Another possible solution is to repeat this pulse sequence several
times. In this case, CRBu achieves the same value as CRBstat for
a stationary target, i.e. the movement of the target has no negative
effect on the DOA estimation in the sense of the CRB.

5. SIMULATIONS

In the following we present some simulations to verify the theo-
retical results. We determine the root mean squared error (RMSE)
of the maximum likelihood (ML) estimator for the electrical angle u
in different scenarios.

We consider a MIMO radar with 4 RX and 4 TX antennas, uni-
formly spaced with an antenna distance of λ/2, i.e. dRX = dTX =
π · [0, 1, 2, 3]T . We choose 1 cycle withNPulse = 4 pulses and set the
transmitting time instants to t = [0, 1, . . . , NPulse−1]T . The target’s
electrical angle u is set to u = sin(10◦) and, for the non-stationary
case, the Doppler frequency ωd is chosen to be ωd = 1.3. The CRB
CRBSIMO of a SIMO radar with the same RX antennas, using only
one TX antenna with NPulse = 4, is computed as an upper bound for
CRBu. The CRB CRBstat for a stationary target with the same dPulse

as the optimal TDM scheme in (35) is computed as a lower bound
for CRBu. We consider the bad TDM scheme with dPulse = dTX,
the optimal TDM dPulse = dPulse,opt of (35) and the case of a station-
ary target using the same TX antennas, i.e. dPulse = dPulse,opt, c.f.
Fig. 2. The simulations are done for overall SNR values S from 0 to
35 dB. 3000 Monte Carlo simulations are carried out for each value
of S in order to determine the RMSE of the ML estimator. The ML
estimates are computed by doing a 1-dimensional search in the sta-
tionary case and a 2-dimensional search in the non-stationary case
on a grid, followed by a quadratic interpolation.

Fig. 3 shows that the ML estimator with the bad TDM scheme
achieves, for a moving target, only the upper bound CRBSIMO and
the ML estimator with the optimal TDM scheme reaches indeed the
lower bound CRBstat, as does the ML estimator in the stationary case.
The threshold value of S at which the ML estimator reaches the CRB
is approximately the same for the bad and optimal TDM scheme.
Hence, with the same hardware platform, we can achieve a gain of
4.47 dB for the same DOA accuracy by just changing the transmis-
sion sequence dPulse of the TX antennas.
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Fig. 2. Considered TDM schemes: (a) bad TDM scheme with
dPulse = dTX and (b) optimal TDM scheme with dPulse =
[dTX

1 , dTX
4 , dTX

4 , dTX
1 ]T
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Fig. 3. Comparison of MIMO-radar DOA estimation with stationary
target and non-stationary target with bad and optimal TDM scheme

6. CONCLUSIONS

We have investigated a time division multiplex MIMO radar and an-
alyzed the DOA estimation of a moving target. We derived the CRB
of the DOA and compared the CRB of MIMO radars using different
TDM schemes and the CRB of a SIMO radar. Using this result, we
deduced optimal TDM schemes such that the CRB is as small as for
a stationary target. Simulations confirmed the theoretical results and
showed that the RMSE of the maximum likelihood estimator is in-
deed as small as for a stationary target, if an optimal TDM scheme
is used.
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