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Abstract—In this paper we present a method to cal-

ibrate the extrinsic parameters of a monocular camera

on a moving vehicle. The method is based on a homog-

raphy which describes the image motion on the road

between two camera shots. Therefore, only the road

surface has to be visible in the pair of images. A reason-

able definition of the world coordinate system in com-

bination with the use of epipolar geometry and odomet-

ric data enables the parameterization of the homogra-

phy matrix with a single parameter. A measure is in-

troduced which evaluates how well the image motion

matches to motion described by the homography. The

minimization of this one-dimensional error measure fi-

nally lead to the extrinsic parameters.

I. INTRODUCTION

Camera calibration is an important area in com-

puter vision. It establishes the relationship between

the 3D environment and its projection onto the im-

age plane. The task of calibration can be subdivided

into two parts: the intrinsic and the extrinsic calibra-

tion. The extrinsic parameters describe the relative

position and orientation of the camera with respect to

the world coordinate system (WCS). The intrinsic pa-

rameters model the projection of points from the cam-

era coordinate system (CCS) onto the image plane.

The parameters are often estimated offline before

the initial operation of the system. Methods like [1–4]

make use of calibration objects of known geometry.

As such objects are not available during the runtime

of the system, the parameters are then kept constant.

The assumption that the intrinsic parameters are static

is reasonable for automotive applications. In con-

trast, mechanical stress like when the vehicle hits a

bump can cause a drift of the extrinsic parameters

what degrades the performance of the complete sys-

tem. Therefore, there is a demand to automatically

recalibrate the extrinsic parameters online because a

repetitive calibration with offline methods is not prac-

ticable for automotive applications. This paper pro-

vides an efficient solution to this problem.

Calibration methods which do not require calibra-

tion objects and estimate the parameters during the

runtime of the system are called self-calibration. As-

sumptions on the structure of the road are commonly

used as an alternative of calibration objects. [5] and

[6] assume straight road boundaries and lane mark-

ings, respectively. Dashed and periodic lane markings

are used in [7]. Some of the previous principles ad-

ditionally assume that the vehicle moves in a straight

line. These assumptions are often violated under real-

world automotive conditions and lead to inaccurate

extrinsic parameters. At least for a side view camera,

the previous methods are not applicable to solve the

calibration problem.

In this paper, only the road surface has to be visible

in the images and is assumed to be approximately flat

in the immediate vicinity of the camera. The image

motion on the road surface, which is induced by the

movement of the camera, can be described by a ho-

mography. The extrinsic parameters are part of this

homography and can be determined if the homogra-

phy matrix is known. The estimation of the homogra-

phy matrix is in general difficult because it contains 8

degrees of freedom (DOF). We simplify the model of

the homography matrix by first estimating the essen-

tial matrix of the epipolar geometry and the vehicle’s

motion based on odometric data. This enables the in-

troduction of an one-dimensional cost function whose

minimization results in the extrinsic parameters.

The outline of this paper is as follows: In Sec. II

we introduce the fundamentals. The proposed cam-

era calibration method is described in Sec. III. The

results of the method for a real-world video sequence

are presented in Sec. IV. Finally, a conclusion is given

in Sec. V.



II. BASICS

A. Camera model

The underlying camera model is the pinhole cam-

era, which describes the projection of a 3D object

point Mw = [X,Y,Z]T onto its image point mp =
[up, vp]

T by

m̃p ∼ A [Re te]M̃w. (1)

M̃w = [X,Y,Z, 1]T and m̃p = [up, vp, 1]
T are in

homogeneous coordinates, [Re te] are the extrinsic

parameters, and A is the intrinsic matrix. The ho-

mogeneous coordinates are defined up to an arbitrary

scaling. Therefore, the operator ”∼” in (1) means

∃λ ∈ ℜ\{0} : [mT
p , 1]T = λ m̃p. (2)

The intermediate step

m̃c ∼ Mc = Re Mw + te (3)

transforms the point Mw from the WCS to the point

Mc in the CCS by an Euclidean transform, where

Re is a rotation matrix with R−1
e = RT

e and te is a

translation vector, resulting in normalized coordinates

m̃c = [uc, vc, 1]
T .

The intrinsic transform between the normalized

and the image coordinates is defined by

m̃p ∼ Am̃c and m̃c ∼ A−1 m̃p. (4)

B. World coordinate system (WCS)

Without loss of generality, let us consider a WCS

whose origin is located on the road surface and below

the camera’s center of projection (COP). The z-axis
of the WCS is pointing towards the camera, whereas

the x-axis is pointing parallel to the lateral profile of

the vehicle into the direction of travel. As a result,

the x- and y-axis describe the road surface which is

assumed to be flat.

C. Extrinsic parameters

The extrinsic parameters [Re te] are already de-

fined in (3). The Euclidean transform can be inverted

as follows

Mw = RT
e Mc + th with th = −RT

e te. (5)

Based on the assumption in II-B, the COP has the

coordinates Mc = 0 in the CCS and Mw = th =
[0, 0, hc]

T in the WCS where hc denotes the camera

height. Since

te = −Re th, (6)

the extrinsic parameters can be also expressed by the

rotation matrix Re and the camera height hc.

D. Motion of the vehicle

The motion of the vehicle between two camera

shots is described by an Euclidean transform in the

WCS

M
′

w = Rw Mw + tw. (7)

The relationship between different coordinates of the

same object point in WCS and CCS is illustrated in

Fig. 1. The extrinsic parameters are assumed to be

identical for both camera shots.

CCS

WCS

image 1 image 2

Mc M
′

c

Mw M
′

w

[Rw tw]

[Rc tc]

[Re te] [Re te]

Fig. 1. Relationship between different coordinates

E. Homography of the road surface

The previous definitions lead to the homography

matrix between two camera shots for a point on the

road surface

Hc = Re

(
Rw +

tw nT
w

−hc

)
RT

e . (8)

nw = [0, 0, 1]T is the normal vector of the road sur-

face (see appendix I for a detailed derivation).

III. CALIBRATION

A. Calibration principle

The extrinsic calibration aims at identifying the

extrinsic parameters. Besides the vehicle’s motion

[Rw tw], they are the remaining components of the

homography matrix in (8). Therefore, the task is to

find a homography matrix, which fits best to the real

image motion on the road surface between two con-

secutive frames, in order to get the desired extrinsic

parameters.

In Fig. 2, two successive images of a video se-

quence are shown. The real image motion is visual-

ized by the feature pair (green line) and the red region

and its transformed version in the frame below. The

motion between the two feature points is defined by

m̃
′

p ∼ AHc A−1 m̃p. (9)



Fig. 2. Two successive frames of a video sequence with one

exemplary feature pair (green line) and a rectangular region of

size 32x32 (red) and the equivalent transformed region (blue)

The idea is to compare the original and the trans-

formed version of the selected region. For example

the sum of absolute differences (SAD) can be com-

puted by

e(Hc) =
∑

m̃p∈B

|I2(AHc A−1 m̃p) − I1(m̃p)| (10)

to obtain an error measure, where I1 and I2 repre-

sent both images and B is the selected region. The

homography matches best, if the measure e(Hc) is

minimized.

A homography matrix has 8 DOF because it is de-

fined up to an unknown scaling factor. Hence we need

an 8-dimensional search in order to minimize e(Hc)
in (10). To reduce the enormous computational cost,

iterative optimization techniques are used. They are

applied e.g. in [8] to identify planar regions. They

suffer from the fact that an initial guess is needed and

the gradient of e(Hc) has to point towards the global

minimum. Unfortunately, the direction of the gradient

depends on the selected size and content of the region

B. The larger the region is, the higher the probabil-

ity is to find the global minimum, but the higher the

computational effort is.

To avoid this high-dimensional search, we sim-

plify the parameterization of the homography matrix

Hc(α) to 1 DOF, namely the parameter α. We not

only profit from odometric data to determine the ve-

hicle’s motion, but also apply the epipolar geometry

to achieve this. Finally, the minimization of the one-

dimensional error measure e(Hc(α)) leads to the ex-

trinsic parameters. The major steps of this calibration

method are summarized in Fig. 3.

Use odometric data do estimate [Rw tw]

Estimate the essential matrix and derive [Rc tc]

Parameterize the rotation matrix Re(α) with α
based on the relation between tw and tc

Minimize the error e(Hc(α)) to identify [Re te]

Refine the estimation by a recursive filter

Fig. 3. Overview of the major steps of the calibration method

B. Use of odometric data

Modern vehicles are equipped with sensors, which

allow a precise estimation of the vehicle’s trajectory

[9]. We use the velocity and the yaw rate of the vehi-

cle to estimate a planar trajectory. This means that the

rotation is around the z-axis of the WCS (cf. (23)).

The motion is defined with respect to the center of

gravity (COG), since many sensors are calibrated in

reference to the COG. With the knowledge about the

position of the camera, it is possible to determine the

Euclidean transform [Rw tw] between two camera

shots, as defined in Sec. II-D. The vehicle moves a

certain distance between two camera shots, which is

denoted by ∆s = ‖tw‖ in the following.

C. Estimation of the essential matrix

The estimation of the essential matrix is not cov-

ered in this paper, but we refer to the excellent work

[10]. It is worth to mention that the estimation of the

essential matrix is not restricted to feature pairs on the

road. Once the essential matrix is estimated, it can be

decomposed into the rotation matrix Rc and the nor-

malized translation vector tc/‖tc‖ (see [11] for de-

tails). The real length of the translation vector can not

be derived, because the essential matrix is defined up

to an unknown scaling factor.

D. Parameterization of the rotation matrix

The rotation matrix Re is normally parameterized

by 3 DOF, i.e. one parameter for each rotation angle

(e.g. Euler angles). In the following, we reduce the

number of required parameters to one, namely the pa-

rameter α. According to (21) and (24), [Rw tw] and
[Rc tc] are related by

tc = Re tw, (11)

Rc = Re Rw RT
e . (12)

Our basic idea is to exploit the fact that the motion

of the camera in the CCS is defined by the translation



vector tc and the equivalent translation in the WCS is

represented by tw. With the use of (11), only one pa-

rameter α is enough (see appendix II) to parameterize

Re. Hence we use the notation Re(α) in the follow-

ing. Equation (12) is implicitly fulfilled with Re(α),
if the vehicles’s motion is consistent with our defini-

tions, and cannot be used as an additional constraint.

E. Proposed calibration method

In summary, two parameters remain in the homog-

raphy matrix in (8), namely α and hc. The estimation

of both values at the same time by the minimization

of the error measure in (10) is challenging, because

different combinations of α and hc result in an almost

similar error measure. This fact will be analyzed in

detail in Sec. IV-B. Therefore, a constant and known

camera height is assumed, which is often a reasonable

assumption. Only one parameter is left in the homog-

raphy matrix

Hc(α) = Re(α)

(
Rw + θ

tw nT
w

‖tw‖

)
RT

e (α) (13)

where θ = ∆s
−hc

. That is why we use the notation

Hc(α). Consequently, the rotation matrix is deter-

mined by Re(α̂) with

α̂ = argminα∈[−π,π] e(Hc(α)). (14)

Finally, the matrix Re is converted into the Rodrigues

notation [10] because the parameterization Re(α) is

time varying, just like tc and tw. The three Rodrigues

parameters for any rotation matrix Re = [rij ]1≤i,j≤3

are defined as follows

wrod =
υ

2 sin(υ)
[r32 − r23, r13 − r31, r21 − r12]

T

(15)

with

υ = arccos

(
1

2
trace(Re) −

1

2

)
. (16)

IV. RESULTS

A. Results for one image pair

For now we consider the images in Fig. 2 again.

The important quantities between both camera shots

are: ∆s ≈ 52 cm, ∆ω ≈ 0.02◦ and hc ≈ 92 cm.

The error is calculated with (10) for the rectangular

region marked in red. The error measure e(Hc(α))
for different values of α is depicted in Fig. 4. Its

global minimum is around α ≈ −3.0. The rota-

tion matrix is Re(−3.0) and the corresponding Ro-

drigues parameters are [1.9185, 0.4581,−0.2130]T .

In comparison, the parameters from an offline cali-

bration are [1.9058, 0.4542,−0.2172]T . We see, our

self-calibration result is almost similar to the offline

calibration result.

An additional fact is visible in the figure. Even

though a small range of α is chosen, the gradient

of e(Hc) does not always point to the global mini-

mum. This is a problem, if gradient-based optimiza-

tion techniques are used and no a priori information is

given. If the rotation matrix is approximately known,

the range of α can be limited. Otherwise, the min-

imum should be scanned in the complete range of

α ∈ [−π, π].
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Fig. 4. Error measure for different values of α for a 32x32 region

with correct camera height (blue) and wrong camera height (red)

B. Ambiguity for the estimation of α and hc

In the following, we consider the problem of esti-

mating α and hc at the same time. It is equivalent to

estimate α and θ, since hc = ∆s
−θ

. The red curve in

Fig. 4 shows the error measure if the correct value of

θ is scaled by a factor of 1.1. As a consequence, the
global minimum is slightly shifted to another posi-

tion and the extrinsic rotation matrix differs from the

correct one. The absolute error measure is still quite

similar. For this reason, the joint parameter estima-

tion of α and hc is challenging because they are es-

timated based on the minimum of the error measure.

The assumption of a static camera height simplifies

the estimation, because only α has to be determined

and the ambiguity problem is bypassed.

C. Uncertainty of odometric data and camera height

At this point, it is necessary to quantify the rota-

tional error which arises from a wrong camera height

or a wrong distance ∆s. The uncertainty of θ is mod-

eled by θ = β θo where θo is the correct value for θ
and β is a multiplicative factor. This leads to an inac-

curate estimate of α as follows

α̂(β) = argminα∈[−π,π] e(Hc(α, β))). (17)



The correct rotation matrix Re(−3.0) is compared

with the estimated matrix Re(α̂(β)) by

V(β) = RT
e (α̂(β))Re(−3.0), (18)

r(β) = arccos(1
3 trace(V(β))). (19)

The measure r(β) approximates the expected value of

the angle between Re(α̂(β))v and Re(−3.0)v for a

random vector v. In Fig. 5, the error r(β) is depicted
for different values of β. The accuracy of Re is ac-

ceptable with respect to a slightly wrong value of θ.
For a divergence of 5%, i.e. in our case hc ± 4.6 cm,

the error r(β) ≈ 1◦. Even if the car is fully loaded,

the height of the camera might not change so much.
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Fig. 5. The rotational error for different values of β, where β is

a multiplicative uncertainty factor of θ

D. Results for a video sequence

In the following, a complete video sequence of

60, 000 frames is processed to analyze the stability

of the proposed calibration method. Actually, the im-

ages in Fig. 2 are two frames of this sequence. The

camera operates with a resolution of 640x240 pixels

and a frame rate of 30 fps. Of course, we need the

real extrinsic parameters as a reference for the eval-

uation of our system. Therefore, the reference para-

meters are obtained offline with a classical calibration

method [1] at the end of the measurement. It uses a

checkerboard pattern as calibration object.

The region B is individually placed for each frame

within a region of interest where the road is expected.

Additionally, the region B has a high variance in the

intensity values to enable an unambiguous minimiza-

tion of e(Hc). In average, every sixth image of the

sequence allows a suitable selection of B. Conse-

quently, only 10, 000 estimates of the rotation matrix

are taken into account in the histogram plot in Fig. 6.

Each color in the histogram represents the distribu-

tion of a component in the Rodrigues notation, which

has a noticeable peak at a certain value. It is obvious

that the method has a low error rate, since most of the

estimates are close to that peak.
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Fig. 6. The histogram over the three Rodrigues parameters of

the rotation matrix, a total number of 10, 000 estimates

The final estimated Rodrigues parameters and the

parameters from the offline calibration are presented

in Table I. The error is arccos(1
3 trace(RT

ref Re)) ≈
0.35◦ between the final extrinsic rotation matrix Re

and the reference matrix Rref.

parameters of wrod (red) (blue) (green)

reference (offline) 1.9058 0.4542 -0.2172

estimated (online) 1.9057 0.4584 -0.2094

TABLE I

ESTIMATED PARAMETERS VERSUS THE REFERENCE VALUES

The final parameters are obtained by a recursive fil-

ter, which approximates an average filter with the aim

to locate the peak in the distribution. Only those mea-

surements are taken into account, which are inside a

certain window. The window is centered around the

previous estimated value and the width is adjusted

automatically, so that approximately 50% of the es-

timates are taken into account. In this way, wrong

estimates are rejected and do not corrupt the final re-

sult.

V. CONCLUSION

We present a novel method to automatically cal-

ibrate the extrinsic parameters of a camera system

online. A general homography matrix contains 8

DOF. With the use of epipolar geometry and odomet-

ric data, 2 DOF remain. An error measure based on

the homography matrix and the real image motion is

introduced. This measure is minimized in order to es-

timate the extrinsic parameters. The assumption of a

static and known camera height is reasonable to re-

duce the parameter space to 1 DOF and to prevent

ambiguities during the minimization of the error mea-

sure. Experiments with a real-world video sequence

show that our method results in accurate and stable

extrinsic parameters which are comparable to classi-

cal offline calibration techniques.



APPENDIX I

It is known in literature [10] that a homography ma-

trix for a plane Πc is defined by

Hc = Rc +
tc nc

T

dc

(20)

where [Rc tc] is the Euclidean transform between two

camera views and the plane Πc : nT
c Mc − dc = 0 is

defined with respect to the first view. If Re and te do

not change between these two camera views, [Rc tc]
can be determined by combining (3), (5), and (7):

M
′

c = ReRwRT
e︸ ︷︷ ︸

Rc

Mc+(Retw + te − ReRwRT
e te︸ ︷︷ ︸

tc

).

(21)

A plane Πw : nT
wMw − dw = 0 defined in the WCS

is transformed to a plane in the CCS by

Πc : nT
w RT

e︸ ︷︷ ︸
nT

c

Mc − (dw + nT
w RT

e te︸ ︷︷ ︸
dc

) = 0. (22)

With the definition of the WCS from Sec. II-B, the

road surface is defined by nw = [0, 0, 1]T and dw =
0. The assumption that the matrix Rw has the form

Rw =




cos(∆ω) sin(∆ω) 0
− sin(∆ω) cos(∆ω) 0

0 0 1


 (23)

and the definition of the extrinsic parameters in (6)

lead to

tc = Re (Rw th − th + tw) = Re tw, (24)

dc = −nT
w RT

e Re th = −hc. (25)

Substituted into (20), we finally obtain the homogra-

phy matrix in (8).

APPENDIX II

A rotation matrix can be derived from the Ro-

drigues rotation formula [10]. It describes a rotation

by an angle γ about an axis specified by a unit vector

v = [vx, vy, vz ]
T and is given by

R = I + W sin(γ) + W2 (1 − cos(γ)) (26)

where I is the identity matrix and W an antisymmet-

ric matrix defined by

W =




0 −vz vy

vz 0 −vx

−vy vx 0


 . (27)

Rotation matrices which are capable to rotate one vec-

tor to another, i.e. y = Rx, can be parameterized

with 1 DOF. The rotation axis is defined by

v(α) = cos(α)
x + y

‖x + y‖
+ sin(α)

x× y

‖x × y‖
(28)

where α is the remaining parameter and the operator

”×” is the cross product. The corresponding rotation

angle is determined by

γ = arccos

(
pT

x py

‖px‖‖py‖

)
(29)

where px = x − (vT x)v and py = y − (vT y)v
are projections of the vector x and y onto the plane,

whose normal vector is the rotation axis.
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