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Abstract—In this paper we present a method to calibrate
the extrinsic parameters of a monocular camera on a moving
vehicle. The method is based on a homography between two
camera shots. Therefore, only the road surface has to be visible
in the pair of images. A reasonable definition of the vehicle
coordinate system in combination with the use of epipolar ge-
ometry reduces the complexity to parameterize the underlying
homography matrix. The extrinsic parameters are determined
analytically by two correctly matched feature points located
on the road surface. The final parameter set is determined
by a recursive filter which considers various estimates over
time. Results with a real-world video sequence indicate that the
method is comparable to classical offline calibration techniques
using objects of known geometry.

I. INTRODUCTION

Camera calibration is an important area in computer

vision. It establishes the relationship between the 3D envi-

ronment and its projection onto the image plane. The task of

calibration can be subdivided into two parts: the intrinsic and

the extrinsic calibration. The extrinsic parameters describe

the relative position and orientation of the camera with

respect to the vehicle coordinate system (VCS). The intrinsic

parameters model the projection of points from the camera

coordinate system (CCS) onto the image plane.

The intrinsic and extrinsic parameters are often esti-

mated offline before the initial operation of the system.

Methods like [1]–[4] make use of calibration objects of

known geometry. As such objects are not available during

the runtime of the system, the parameters are then kept

constant. The assumption that the intrinsic parameters are

static is reasonable for automotive applications. In contrast,

mechanical stress, like when the vehicle hits a bump, can

cause a drift of the extrinsic parameters which degrades the

performance of the complete system. There is, therefore, a

demand to automatically recalibrate the extrinsic parameters

online because a repetitive calibration with offline methods is

not practical for automotive applications. This paper provides

an efficient solution to this problem.

Camera self-calibration refers to methods which do not

require calibration objects. They continuously estimate the

parameters during the runtime of the system. Assumptions on

the structure of the road are commonly used as an alternative.

The paper [5] assumes road boundaries to be straight and

flat. Similarly, the work [6] assumes straight lane markings.

Dashed and periodic lane markings are used for calibration

in [7]. Some of the previous principles additionally assume

that either the vehicle moves in a straight line, or the camera

height or velocity information is available, or a combination

of all. These assumptions are often flawed under real-

world automotive conditions and lead to inaccurate extrinsic

parameters. At least for a side view camera, the previous

methods are not applicable to solve the calibration problem.

In this work, only the road surface has to be visible in the

images and is assumed to be approximately flat in the imme-

diate vicinity of the camera. The VCS is defined with respect

to this plane and the vehicle. This enables the estimation of

the extrinsic parameters, since they describe the relationship

between the CCS and the VCS. The image motion on the

road surface, which is induced by the movement of the

camera, can be described by a projective transformation, also

known as homography. The extrinsic parameters are part of

this homography and can be determined if the homography

is estimated from the image motion.

Our previous work [8] relies on odometric data and

minimizes a one-dimensional cost function to estimate the

homography matrix. The classical estimation of the homog-

raphy suffers from the fact that a problem of eight degrees of

freedom (DOF) has to be solved. At least four feature pairs

on the road plane are required to find a unique solution to

this problem. A feature pair is the assignment of two image

points which are projections of the same object point in

3D. Standard methods tend to fail to extract and assign four

feature pairs on the road surface. We propose a new approach

for the automatic calibration of the extrinsic parameters. We

first estimate the essential matrix of the epipolar geometry

from feature pairs of successive images. This is much easier

than the estimation of the homography since the feature pairs

can be located anywhere, not only on the road surface. The

epipolar geometry is then used to identify feature points

on the road surface and to simplify the parameterization of

the homography matrix. Finally, only two feature pairs on

the road surface are required to analytically determine the

extrinsic parameters.

The outline of this paper is as follows: In Sec. II we

introduce the fundamentals. The proposed camera calibration

method is described in Sec. III. The results of the method

for a real-world video sequence are presented in Sec. IV.

Finally, a conclusion is given in Sec. V.



II. BASICS

A. Camera projection

The underlying camera model is the pinhole camera. It de-

scribes the projection of a 3D object point Mv = [X,Y, Z]T

onto its image point mp = [up, vp]
T by

λ [mT
p , 1]T = A [Re te] [M

T
v , 1]T (1)

where λ is a scalar factor for the normalization, see (4),

[Re te] are the extrinsic parameters, and A is the intrinsic

matrix. The intermediate step

λ [mT
c , 1]T = Mc = Re Mv + te (2)

transforms the point Mv from the VCS to the point Mc in

the CCS by an Euclidean transform. Re is a rotation matrix

with R
−1
e = R

T
e , and te is a translation vector, resulting

in normalized coordinates mc = [uc, vc]
T . The intrinsic

transform between the normalized and the image coordinates

is defined by

m̃p = Am̃c and m̃c = A
−1

m̃p. (3)

Here, ”∼” represents homogeneous coordinates. The rela-

tionship between Cartesian coordinates m and homogeneous

coordinates m̃ is

λ ∈ ℜ\{0} : λ [mT , 1]T = m̃. (4)

Therefore, homogeneous coordinates can be scaled arbitrarily

while maintaining the representation of the same point.

B. Vehicle coordinate system (VCS)

Let us consider a VCS whose origin is located on the road

surface and below the camera’s center of projection (COP).

The z-axis of the VCS is pointing vertically towards the

camera, whereas the x-axis is pointing parallel to the lateral

profile of the vehicle into the direction of travel.

C. Extrinsic parameters

The extrinsic parameters [Re te] are already defined in

(2). The Euclidean transform can be inverted as follows

Mv = R
T
e Mc + th with th = −R

T
e te. (5)

Based on the assumption in II-B, the COP has the coordinates

Mc = 0 in the CCS and Mv = th = [0, 0, hc]
T in the VCS

where hc denotes the camera height. Since

te = −Re th, (6)

the extrinsic parameters can alternatively be expressed by the

rotation matrix Re and the camera height hc.

D. Motion of the vehicle

The motion of the vehicle between two camera shots is

described by an Euclidean transform in the VCS

M
′

v = Rv Mv + tv. (7)

In the CCS, the same motion is described by M
′

c =
Rc Mc + tc where Rc and tc are derived in Appendix I.

The relationship between different coordinates of the same

object point in VCS and CCS before and after the motion

is illustrated in Fig. 1. The extrinsic parameters are assumed

to be identical for both camera shots.

CCS

VCS

image 1 image 2

Mc M
′

c

Mv M
′

v

[Rv tv]

[Rc tc]
[Re te] [Re te]

Fig. 1. Relationship between different coordinates

E. Epipolar geometry

The image motion between two camera shots depends on

the distance of the considered object point to the COP, and

on the motion of the camera. Nevertheless, the corresponding

point in the second image is located on a straight line, the

so-called epipolar line, for a fixed point in the first image and

vice versa. This relationship is part of the epipolar geometry

(see [9]) and is formulated in normalized coordinates as

E = [tc]× Rc. (8)

E is called the essential matrix and [.]× denotes the skew-

symmetric matrix operator

[tc]× =




0 −tz ty
tz 0 −tx
−ty tx 0


 with tc =




tx
ty
tz


 . (9)

The equivalent relationship in image coordinates is described

by the fundamental matrix F = A
−T

EA
−1. The epipolar

line is computed as follows

l = Fm̃p (10)

Consequently, the corresponding image point fulfills the

equation

m̃
′T
p Fm̃p = 0, (11)

the so-called epipolar constraint. The constraint can also be

expressed in normalized coordinates as follows

m̃
′T
c Em̃c = 0. (12)

Unfortunately, points which fulfill the epipolar constraint do

not necessarily belong to the same object point.

F. Homography of the road surface

In contrast to Sec. II-E, points on a plane have a certain

distance to the COP and the image motion is no longer

ambiguous. This leads to a homography between two camera

shots which can be expressed by the matrix

Hc = Re

(
Rv +

tv n
T
v

−hc

)
R

T
e (13)

where nv = [0, 0, 1]T is the normal vector of the road

surface (see Appendix I for a detailed derivation). Note that

the transformation is given in normalized coordinates. The

motion of a point on the road surface is defined by

m̃
′

p = AHc A
−1

m̃p and m̃
′

c = Hc m̃c (14)

in image and normalized coordinates, respectively.



III. CALIBRATION

A. Assumptions

First of all, we will summarize the assumptions used by

our calibration method:

• The road is flat in the vicinity of the origin of the VCS.

• The intrinsic parameters are available and remain con-

stant (intrinsic matrix A is known).

• The camera height hc is known, but is not needed for

the calibration of Re.

• The vehicle is traveling in a straight line between two

consecutive frames, i.e. Rv = I and tv = [−∆s, 0, 0]T .
∆s denotes the distance which the camera has moved

into the direction of travel.

• There is no odometric data (e.g. yaw rate or velocity

sensor) available from the vehicle (∆s unknown).

The fourth assumption is motivated by a detailed study

of the motion of a vehicle. The statistical analysis of more

than 20, 000 km measured data reveals that the yaw rate is

less than 0.65◦/s for 50% of the time, less than 1.07◦/s for

75% of the time, less than 1.65◦/s for 90% of the time and

greater than 2.19◦/s for only 5% of the time. A camera in

an automotive application normally operates with frame rates

in the range of 10 − 50 fps. Therefore, the rotation of the

camera between two consecutive frames is negligible most

of the time.

B. Calibration principle

The extrinsic calibration aims at identifying the extrinsic

parameters [Re te]. The task is, therefore, to find a homog-

raphy matrix, which best fits the real image motion on the

road surface between two consecutive frames. In Fig. 2, two

successive images of a video sequence are shown. The real

image motion is depicted by the feature pair indicated either

by the green line, or the red rectangular region in the top

image and its transformed version in the frame below.

×

×

Fig. 2. Two consecutive frames of a video sequence with one exemplary
feature pair (green line) and a rectangular region of size 32x32 (red) in the
top image and the equivalent transformed region (blue) in the bottom image

There is a unique homography matrix Hc which exactly

describes this displacement for all feature pairs extracted

from the road surface (see II-F). On the other hand, if there

is a set of feature pairs available on the road, a homography

matrix can be estimated, from which the extrinsic parameters

can be extracted. This is our basic concept for the calibration

of the extrinsic parameters.

A general projective transformation (homography matrix)

has 8 DOF. It is known that a minimum of four feature pairs

is needed for a unique solution of Hc. The estimation on

the basis of four feature points tends to be defective because

the correct localization of four points on the road surface

is difficult. We will reduce the required number of feature

pairs to a minimum of two by taking advantage of epipolar

geometry. The major steps of this calibration method are

summarized in Fig. 3.

Identification of feature pairs (not necessarily on the road

surface) for the estimation of the epipolar geometry

Robust estimation of the essential matrix E and tc

Image rectification followed by the identification of two

correctly assigned feature pairs on the road surface

Two-dimensional parameterization of the homography

Estimation of the homography matrix and the extrinsic

parameters followed by a recursive smoothing filter

Fig. 3. Overview of the major steps of the self-calibration method

C. Estimation of the epipolar geometry

The essential matrix E is estimated by using feature pairs,

but with the advantage that they can be located anywhere, not

only on the road surface. Standard methods like the Scale-

Invariant Feature Transform (SIFT [10]) or the Speeded Up

Robust Features (SURF [11]) can be applied to extract the

feature pairs. These methods are well known in literature for

the estimation of the epipolar geometry. We use a Harris

corner detector in combination with a sum of absolute

difference (SAD) block matching strategy, since this is much

faster and still suitable for our purpose.

For an estimation of the essential matrix in the presence

of mismatches of the feature pairs, methods like RANdom

SAmpling Consensus (RANSAC [12]) or Least Median of

Squares (LMedS [13]) are proven to be robust. Both methods

have in common that, for each iteration, first a set of feature

pairs is randomly selected to determine one instance of the

essential matrix and secondly, all other feature pairs are

tested to see whether they fit that particular matrix. If a

feature pair fits the essential matrix, it is marked as a so-

called inlier, whereas all other pairs are marked as outliers.

The only difference between both methods is the criterion

to assign a pair as an inlier or outlier. RANSAC uses a

static threshold, whereas LMedS adopts the threshold in such



a way that always half of the feature pairs are marked as

inliers. We refer to the excellent work of [14], [9] and [15]

for further information about the robust estimation of the

essential matrix.
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Fig. 4. Two consecutive frames of a video sequence with several feature
pairs: identified as inliers (green, dashed) and outliers (red, dotted) and the
corresponding epipolar lines (blue, solid)

Fig. 4 shows the feature pairs extracted from two consecu-

tive frames. Inliers are marked green and outliers are marked

red. The blue lines represent the corresponding epipolar lines

for each feature pair.

As mentioned before, a randomly selected set of feature

pairs is used to estimate the essential matrix. Normally, linear

methods like the 7-point or 8-point algorithm [16] are applied

for that purpose. The names of the algorithms suggest that

they need at least seven or eight feature pairs. The feature

pairs are used in combination with (12) to form a system

of linear equations (SLE) which is solved to determine E.

The SLE does not take into account that the essential matrix

is rank deficient by definition (rank(E) = 2). Accordingly,
the solution of the SLE is corrected afterwards to fulfill

that constraint [9]. The determination of the essential matrix

on the basis of seven or eight feature pairs is actually

overdetermined, since the rotation matrix has 3 DOF and

the translation vector has 2 DOF. This is a drawback in the

presence of mismatches because the more feature pairs that

are needed, the more iterations are required to reliably select

at least one uncorrupted set of pairs.

We require only two feature pairs for the intermediate

estimation of the essential matrix because no rotation is

assumed (see III-A). The matrix Rc is, therefore, the identity

matrix which leads to the new essential matrix E = [tc]×
according to (8). Each feature pair, which is inserted into

(12), now results in the following equation

[vc − v
′

c, u
′

c − uc, ucv
′

c − vcu
′

c] t
T
c = 0. (15)

Two feature pairs and the additional constraint ‖tc‖ = 1
are sufficient to find a unique solution of tc and E. The

complete estimation process of the essential matrix is not

covered by this paper in detail. It is worthwhile to mention

that the simplification leads to a faster convergence because

less iterations are needed. In the following, it is assumed that

the translation vector tc is reliably estimated. Note that the

real length of the vector can not be determined.

D. Feature extraction on the road plane

The estimation of the extrinsic parameters requires feature

pairs on the road surface. In principle, a subset of the

feature pairs, which are already used for the estimation

of the essential matrix in III-C, could be reused. At this

point, a different technique of the extraction and matching

is introduced because the standard methods tend to fail for

feature points on the road surface. It takes advantage of the

epipolar geometry, namely the known translation vector tc.

The requirements are summarized as follows:

• feature pairs should be located on the road plane,

• each pair should fulfill the epipolar geometry,

• sub-pixel accuracy of the position of the feature pairs,

• mismatches should be recognized.

In general, the correspondence problem is a two-dimensional

problem, since the two-dimensional coordinates of the corre-

sponding feature point have to be identified. To simplify the

feature extraction and matching, we transform the image in

a similar manner to the image rectification process in stereo

vision does. The original and the transformed version of an

image is shown in Fig. 5 as illustration of this transformation.

+

Fig. 5. The original and the transformed version of an image, one
exemplary feature point extracted on the road surface (green cross), the
horizontally aligned scan line for the disparity estimation (blue line)

The image resampling is based on a projective transfor-

mation. Primarily, the underlying transformation matrix T

consists of the original intrinsic matrix A and a new intrinsic

matrix V (ideal pinhole camera) as follows

T
−1 = ART V

−1 (16)

with

RT =


 1

ax



−tx
−ty
−tz


 ,

1

ay




ty
−tx
0


 ,

1

az




tx tz
ty tz
t2x t2y





 (17)



where the matrix RT rotates the original perspective to the

new axially parallel alignment. The parameters ax, ay and

az normalize the column vectors of the rotation matrix. Note

that the matrix RT is orthogonal and derived from the vector

tc defined in (9). The rotation is based on the idea that the

first column vector of the matrix RT rotates the x-axis of

the new perspective to the baseline between the two centers

of projection represented by tc, the second column vector is

chosen to be perpendicular to this baseline and the original

z-axis, and the third column vector is computed as the cross

product of the first and second column vector.

The corresponding feature point is located along a one-

dimensional scan line after the transformation, which is

horizontally aligned. Actually, a scan line represents an

epipolar line of the new perspective. The correspondence

search would also be feasible along the original epipolar

line but the processing based on the transformed image has a

couple of advantages. First of all, the matrix V provides the

opportunity to select a region of interest (ROI) which con-

tains potential feature points on the road plane. Furthermore,

the feature points can be extracted by a simple horizontal

gradient filter followed by a non-maximum suppression. One

exemplary feature point mt = [ut, vt]
T is depicted in Fig. 5

as a green cross. The intensity values along the blue line are

depicted in Fig. 6, where the high gradients are obviously

around the extracted feature point. The red intensity curve is

extracted from the subsequent image, which is transformed

identically. The displacement of the feature point is indicated

by the arrow (≈ 70 pixels).
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Fig. 6. The underlying data basis for the disparity estimation, the intensity
values from the previous (blue) and current (red) transformed image

The displacement ∆di, also called disparity, can be deter-

mined by solving

∆di = argmind∈[∆dmin,∆dmax]

b∑

i=−b

|e(d, i)|2 (18)

with

e(d, i) = I1(ut + i, vt) − I2(ut + i + d, vt) (19)

where I1 and I2 are the transformed images. For the present

example, the search range defined by ∆dmin and ∆dmax

is [−120, 50] and the block size b of the sum of squared

differences (SSD) is 6.

The sub-pixel accuracy is achieved, similar to [17], by a

refinement step in the least square sense on the basis of a

Tayler expansion as follows

∆dr = ∆di +

∑b

i=−b I
′

2(ut + i + ∆di, vt) e(∆di, i)
∑b

i=−b I
′

2(ut + i + ∆di, vt)2
(20)

with

I
′

2(ut, vt) = I2(ut + 1, vt) − I2(ut, vt). (21)

Finally, the coordinates of the corresponding feature point

are defined by m
′

t = [ut+∆dr, vt]
T , where the x-coordinate

is shifted by ∆dr and the y-coordinate remains the same.

E. Detection of mismatches

There are several interferences which lead to a wrong

disparity estimation and consequently to mismatches. It is

reasonable to detect such disturbances beforehand in order

to prevent systematic errors in the estimation of the extrinsic

parameters. The problems can be summarized as follows:

shadow of the own vehicle or from other objects, no camera

movement at all, reflections on the asphalt, detection of

overtaking cars and objects besides the lane.

The detection of a static camera or shadow on the road is

simple, since the disparity is zero or at least relatively small.

The displacement of a feature point have to exceed a certain

threshold

|∆dr,i| > ths, (22)

otherwise it is rejected. If the vehicle moves forward, the

disparity is naturally expected to be negative. A positive

value indicates that an overtaking vehicle is in the focus of

the camera. This type of error can be prevented as follows

∆dr,i < 0. (23)

Reflections on the road surface or other types of misdetec-

tions have one in common: the resulting disparity differs

substantially from all others. Consequently, only two feature

pairs which have a similar displacement are taken into

account. This is tested by the following criterion

|∆dr,i − ∆dr,j | < thr. (24)

Finally, two feature pairs are selected from the set of feature

pairs which fulfill the previous criteria. The feature points

were extracted in the transformed version of the image and

have to be converted into normalized coordinates as follows

m̃c,i = RT V
−1

m̃t,i. (25)

The normalized feature pairs are the starting point to estimate

the extrinsic parameters as it will be proposed in Sec. III-G.

F. Parameterization of the rotation matrix

The question now is: How can the translation vector

tc be used to simplify the estimation of the homography

matrix Hc? We will realize this by a one-dimensional

parameterization of the rotation matrix Re. Remember that a

rotation matrix is normally parameterized by 3 DOF, i.e. one

parameter for each rotation angle. Our basic idea is to exploit

the fact that the motion of the camera in the CCS is defined

by the translation vector tc and the equivalent translation in



the VCS is represented by the vector tv . This relationship is

expressed by the equation

tc = Re tv, (26)

see (47). The rotation matrix consists of three column vectors

Re = [r1, r2, r3]. Since tv = [−∆s, 0, 0]T , the first column

vector of Re is proportional to tc and can be calculated by

r1 = −tc/‖tc‖.
The rotation matrix is orthonormal by definition and

the last column vector r3 is perpendicular to the the first

and the second one. Consequently, the vector r3 can be

parameterized by the equation

r3(α) = cos(α)n1 + sin(α)n2 with α ∈ [−π, π] (27)

where n1 and n2 are two arbitrary unit vectors which are

perpendicular to r1 and to each other. We choose

n1 =
1√

r2
11 + r2

21



−r21

r11

0


with r1 =




r11

r21

r31


 (28)

n2 = r1 × n1. (29)

This choice has the limitation that r1 6= [0, 0, 1]T . Therefore,
a camera whose optical axis points exactly towards the

direction of travel of the vehicle, is not permitted. This is

never met for a side view camera application. For a front

view camera application, the vectors should be chosen in a

different manner to prevent numerical instabilities.

The value α is the remaining DOF in the one-dimensional

parameter space of the rotation matrix, since the second

column vector of Re can be computed from the first and

third column vector as follows

Re(α) = [r1,−r1 × r3(α), r3(α)]. (30)

G. Estimation of the extrinsic parameters

Based on the assumptions in Sec. III-A, the rotation matrix

Rv of homography matrix in (13) is replaced by the identity

matrix. Furthermore, the parameterization of the rotation

matrix Re(α) is applied. This leads to

Hc(θ, α) = I + Re(α)ΘR
T
e (α) (31)

with

Θ =




0 0 θ
0 0 0
0 0 0


 and θ =

∆s

hc

. (32)

Note that the homography matrix is parameterized by θ and

α. The previous equation can be reformulated as

Hc(θ, α) = I + θ r1r
T
3 (α). (33)

Besides the distance ∆s, the extrinsic parameters Re and hc

are the remaining components of the homography matrix. It

is obvious that the camera height hc cannot be estimated if

the distance ∆s is not known and vice versa. In this paper, we
consider the case that ∆s is unknown, but the camera height

hc is known. The camera height is obtained by an offline

calibration method or directly from the measured installation

height. Consequently, only the orientation of the camera has

to be estimated. Fortunately, the estimation of the rotation

matrix Re stays unaffected from a wrong choice of hc. This

is due to the fact that θ is estimated anyway and the distance

∆s is estimated implicitly from θ. Consequently, a wrong

camera height will lead to a wrong distance ∆s, but this
is only of importance if the distance ∆s is used at a later

processing step.

In the following, we derive an analytic solution to deter-

mine the extrinsic parameters based on two feature pairs.

Therefore, the parameterization r3(α) from (27) is substi-

tuted into (33) to get

Hc(α) = I + θ r1(cos(α)nT
1 + sin(α)nT

2 ). (34)

According to (14), a single feature pair is related to the

homography matrix as follows

1

λ
m̃

′

c = m̃c + θ r1 (cos(α)nT
1 + sin(α)nT

2 ) m̃c︸ ︷︷ ︸
µ

(35)

where λ is the unknown arbitrary scale factor from (4). This

factor can be solved easily with the last row of the previous

SLE ( 1
λ

= 1 + θ µ r31). Substituted into the first and second

row leads to two different equations for θ:

θu =
1

µ

uc − u
′

c

u′

c r31 − r11︸ ︷︷ ︸
ηu

and θv =
1

µ

vc − v
′

c

v′

c r31 − r21︸ ︷︷ ︸
ηv

. (36)

Actually, θu and θv, or ηu and ηv should be identical for a

single feature pair because θ is defined by the distance ∆s
and the camera height hc. The constraint that these values

should be identical is equivalent to the epipolar constraint

in (12). We consider the epipolar constraint during the

extraction of the feature pairs. According to that, the value of

η can be determined by one of the previous formulas, since

η = ηu = ηv. Hence, the amount of parameters, which can be

solved by the system of equations, is decreased. That is the

reason why a single feature pair is insufficient to determine

the parameter α if the value of θ is not known a priori.

Contrary to [8] where θ is known, here two feature pairs are

needed to solve α. Note that they are not allowed to be on

the same epipolar line.

By definition, the value of θ should be independent of

the choice of the feature pair, whereas µ and η do depend.

Therefore, µ1 and η1 are the values from the first and µ2

and η2 from the second feature pair, respectively. These

considerations lead to the equation

µ1 η2 − µ2 η1 = 0 (37)

which can be reformulated as

A cos(α) + B sin(α) =
√

A2 + B2 sin(α + φ) = 0 (38)

with

A = η2 n
T
1 m̃c,1 − η1 n

T
1 m̃c,2 and (39)

B = η2 n
T
2 m̃c,1 − η1 n

T
2 m̃c,2. (40)

There are two solutions for α: −φ and π−φ, where tan(φ) =
A/B. The sign is the only difference with respect to the



resulting rotation vector: r3(−φ) = −r3(π − φ). Only the

correct solution is physically meaningful and can be easily

identified. In general, it is a good idea to compute both

Re(−φ) and Re(π − φ) to select the right one. A camera,

for example, which is attached to the left side of the vehicle,

fulfills r32 > 0, since the optical axis of the camera should

point outwards. Alternatively, the constraint θ > 0 can also

indicate the correct solution since ∆s, hc > 0.
The final solution of Re is converted into the Rodrigues

notation [9] because the parameterization Re(α) is incon-

stant over time - due to the fact that the parameterization

depends on tc. This is one possibility of an invertible

representation of a rotation matrix. The three Rodrigues

parameters are defined as follows

ωrod =
υ

2 sin(υ)
[r32 − r23, r13 − r31, r21 − r12]

T (41)

with

υ = arccos

(
trace(Re) − 1

2

)
. (42)

IV. RESULTS

In the following, a complete video sequence of 60, 000
frames is processed to analyze the stability of the proposed

calibration method. The camera operates with a resolution

of 640x240 pixels and a frame rate of 30 fps.

Of course, we need the real extrinsic parameters as a

reference for the evaluation of our system. Therefore, the

reference parameters are obtained offline with a classical

calibration method [1]. It uses a checkerboard pattern as

calibration object and estimates the extrinsic parameter set.

A. Estimation of the essential matrix

The Harris corner detector in combination with a sub-

sequent 16x16 SAD block matching extracts the required

feature pairs for the estimation of the epipolar geometry.

RANSAC subsequently estimates the essential matrix in

the presence of mismatches. The robust estimation of the

essential matrix consists of three parameters (cf. Sec. III-

C), namely the components of the translation vector tc. The

results of the estimation for the video sequence are illustrated

in Fig. 7. Each color in the histogram plot represents the

distribution of one component of the translation vector.

Each component has a noticeable peak at a certain value,

which is very likely close to the real value of the translation

vector. The final parameters are presented in Table I. They

are obtained by a recursive filter, which approximates an

average filter for each component of the translation vector

with the aim to locate the peak in the distribution. The filter

is adjusted in such a way that on the one hand it adopts

slowly if the extrinsic parameter set has really changed and

on the other hand it is robust against wrong estimates. In

other words: the compromise between the adaptability and

stability of the filter. Additionally, only those measurements

are taken into account which are inside a certain window

(see Fig. 7). The window is centered around the previous

estimated value and the width is adjusted automatically,

so that approximately 50% of the estimates are taken into
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Fig. 7. The histogram over the three components of the translation vector
tc = [tx (red, right), ty (blue, middle), tz (green, left)]T , the adapting
window for each parameter (dashed)

account. In this way, wrong estimates, due to mismatches or

a rotation of the vehicle, are rejected and do not corrupt the

final result.

parameters of tc (red) (blue) (green)

reference 0.9093 0.2081 -0.3603

measured 0.9059 0.2158 -0.3645

TABLE I

FINAL TRANSLATION VECTOR VERSUS THE REFERENCE

B. Estimation of the extrinsic rotation matrix

For the estimation of the extrinsic rotation matrix, we

assume that the epipolar geometry was correctly estimated

(see Table I) and initialize the required translation vector to

tc = [0.9059, 0.2158,−0.3645]T . The threshold ths = 20
was chosen, which represents the expected pixel displace-

ment for a camera velocity of 30 km/h. This is no drawback

since a vehicle normally travels much faster. Setting thr = 20
is also a good choice to reject the majority of mismatches,

which would lead to systematic errors, but still accept most

of the correctly assigned feature points. On average, every

sixth image pair has two strong feature pairs which are

expected to be correctly matched and suitable to estimate the

rotation matrix. The results for the complete video sequence

are illustrated in Fig. 8 as a histogram plot, while the rotation

is represented in the Rodrigues notation.
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Fig. 8. The histogram over the three Rodrigues parameters ωrod =
[ω1 (red, right), ω2 (blue, middle), ω3 (green, left)]T of the rotation matrix
with a total number of 10, 000 estimates



Each color in the histogram represents the distribution

of one component in the Rodrigues notation. It is obvious

that the distribution is different from each other. This can

be explained by the parameterization of the rotation matrix,

since only a subset of all possible rotations are parame-

terized. The final parameter set is computed in the same

way as the peaks from the translation vector were selected.

They are listed in Table II. The error between the final

extrinsic rotation matrix Rfin and the reference matrix Rref

is arccos( 1
3 trace(R

T
refRfin)) ≈ 0.632◦.

parameters of ωrod (red) (blue) (green)

reference 1.9058 0.4542 -0.2172

measured 1.9057 0.4584 -0.2094

TABLE II

FINAL EXTRINSIC PARAMETERS VERSUS THE REFERENCE

V. CONCLUSION

We presented a new method to automatically calibrate

the extrinsic parameters of a monocular camera. It basi-

cally exploits a homography between two camera shots if

the road surface is visible and the camera has moved. A

homography matrix has in general eight degrees of freedom.

The definition of a reasonable vehicle coordinate system

in combination with the epipolar geometry simplifies the

parameterization of the underlying homography matrix. Fur-

thermore, a similar process to the image rectification in

stereo vision is introduced. This is the starting point for

the extraction, selection and matching of potential feature

points on the road surface. We derived an analytic solution

to determine the extrinsic parameters based on two pairs of

corresponding feature points.

Finally, we presented the results for a real-world video

sequence. The final extrinsic parameters are estimated over

various image pairs by a recursive filter which is robust

against outliers. The resulting parameter set is competitive

with the result obtained by the classical offline calibration

method.

APPENDIX I

It is known in literature [9], [15] that a homography matrix

for a plane Πc is defined by

Hc = Rc + tc n
T
c /dc (43)

where [Rc tc] is the Euclidean transform between two

camera views in the CCS and the plane Πc : nT
c Mc−dc = 0

is defined with respect to the first view. If Re and te do not

change between these two camera views, [Rc tc] can be

determined by combining (2), (5), and (7):

M
′

c = ReRvR
T
e︸ ︷︷ ︸

Rc

Mc+(−ReRvR
T
e te + Retv + te︸ ︷︷ ︸

tc

). (44)

A plane Πv : n
T
v Mv − dv = 0 defined in the VCS is

transformed to a plane in the CCS by

Πc : nT
v R

T
e︸ ︷︷ ︸

nT
c

Mc − (dv + n
T
v R

T
e te︸ ︷︷ ︸

dc

) = 0. (45)

With the definition of the VCS from Sec. II-B, the road

surface is defined by nv = [0, 0, 1]T and dv = 0. The

assumption that the rotation matrix Rv has the form

Rv =




cos(∆ω) sin(∆ω) 0
− sin(∆ω) cos(∆ω) 0

0 0 1


 (46)

and the definition of the extrinsic parameters in (6) lead to

tc = Re(Rvth − th + tv) = Retv, (47)

dc = −n
T
v R

T
e Reth = −hc. (48)

Substituted into (43), we finally obtain the homography

matrix in (13).
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