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Abstract

In this paper we present an approach of extracting voice
quality contours from speech utterances. We apply the
theory of hidden Markov models to voice quality clas-
sification. As in the case of automatic speech recog-
nition, where the states of the model are interpreted as
different phonemes, we interpret the states of our voice
quality models as different phonation types. Since non-
modal voice quality is only selectively applied in natural
speech, the task is to detect those regions within an utter-
ance where these voice qualities were used by the human
speech production. We realize that by building so called
voice quality contours. Each segment of speech is asso-
ciated by one discrete voice quality class defined by J.
Laver [1]. In this study we distinguish between modal,
breathy, creaky, and rough voice.

1. Introduction

Voice quality is an often used instrument to express lin-
guistic and paralinguistic properties in speech. Besides
intonation, intensity, and duration, voice quality is one of
the important factors of prosody. Former investigations
have shown that the voice quality parameters allow the
distinction between different speaker groups or speaking
styles like gender [2], pathological and non-pathological
speakers [3], and word stress [4]. Also, for emotion
recognition, a lot of information about the emotional state
of a speaker is coded in voice quality aspects [5]. Other
potential applications in speech analysis are aging group
detection, forensic speaker identification [6], and the im-
provement of automatic speech recognition (ASR).

Thus an automatic detection of different voice quali-
ties from the speech would be desirable. Our former stud-
ies showed the potential of voice quality parameters for
the classification of whole utterances [7]. But a segmen-
tal classification in terms of a voice quality contour would
be more appropriate for characterizing the voice quality
content of a spoken utterance. Short parts of an utter-
ance containing only a few segments that are produced in
creaky, breathy or rough voice should also be detected by
such a system.

There are various methods in the literature for the
classification of time series. The most popular method is
hidden Markov modelling because of its usage in ASR.
We apply discrete hidden Markov models (HMM) for
the classification of voice quality. By associating every
speech segment with the state of the most likely state se-
quence of the model, we extract a discrete voice quality
contour for a spoken utterance.

The paper is structured as follows. Section 2 defines
voice quality and describes the voice quality parameters
used in this paper. The well known k-means algorithm for
clustering is introduced in section 3. The theory of HMM
and its application to the extraction of voice quality con-
tours are presented in section 4. Section 5 shows some
results for classifying voice qualities by using HMM. The
paper ends up with a conclusion.

2. Voice quality

Voice quality is mainly affected by the excitation of the
human voice that is called phonation. Thus, the shape
of the glottal pulse is responsible for the voice quality
that a speaker is realizing. In contrast, all procedures
that belong to the articulation process affect the generated
sounds, which all together build the linguistic content.

Usually voice quality parameters are obtained from
the electroglottographical signal which is measured at
the glottis. Electroglottography (EGG) is a technique
used to record the laryngeal behaviour indirectly by mea-
suring the change in electrical conductivity across the
throat. There are other methods like stroboscopy or laryn-
goscopy that belong to medical imaging.

2.1. Voice quality parameters

We use only the acoustic speech signal for voice quality
extraction. From the literature, we know a large num-
ber of methods for parameterizing voice quality. Time
domain parameters like open quotient or skewness quo-
tient are directly related to the parameters from EGG.
Another group of methods describe voice quality in the
frequency domain mainly by measuring different param-
eters of spectral tilt.



We follow an approach in the frequency domain by
estimating spectral gradients from the glottal excitation
spectrum. Therefore, we first compensate the influence
of the vocal tract by inverse filtering. It is based on the
method first introduced by Stevens and Hanson [8] later
extended in [5]. The following 4 spectral gradients are il-
lustrated in Fig. 1 with respect to the pitch frequencyF0:
”OpenQuotientGradient”, ”Glottal OpeningGradient”,
”SKewnessGradient”, and ”Rate ofClosureGradient”.
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Figure 1: Spectral gradients

Fkp are the nearest harmonics to the first 3 formants.
There are two more parameters used as features here.
These are the pitch frequencyF0 and the bandwidth
of the first formant normalized to its frequency, called
” Incompleteness ofClosure”. Thus, for every analysis
segment of length 25 ms, where periodic excitation is ob-
served, a 6-dimensional voice quality parameter vector is
extracted. The overlapping segments are calculated ev-
ery 10 ms. In the following, solely this parameter vector
is used as feature vectorx(t) for classification.

2.2. Phonation types by J. Laver

John Laver defined a set of discrete voice qualities de-
scribing the most important phonation types used in hu-
man speech production [1]. These are modal, breathy,
creaky, rough, whispery, and falsetto voice. Since the lat-
ter two are really sparse in regular language use, only the
first four are studied in this paper.

3. Vector quantization

The one-dimensional quantization of scalar values can be
extended tok-dimensional vectors. The commonly used
method is the k-means clustering algorithm. Vector quan-
tization can also be seen as a classification process which
assigns a one-dimensional symbol to ak-dimensional
vector. In this paper we use the k-means algorithm for
two purposes. On the one hand we use the k-means algo-
rithm to quantize the feature vectorsx(t) to the discrete
observationso(t) which are required as input for the dis-
crete hidden Markov model, see section 4. On the other
hand it is directly used for the classification of four voice
qualities, see section 5.1. Therefore all the feature vec-
tors are partitioned to 4 clusters. Each cluster is directly
associated with a voice quality.

4. Hidden Markov models

Hidden Markov models are well known from [9]. In
combination with mel frequency cepstral coefficients
(MFCC) they build the state of the art technique in ASR.
But HMM can also be used for modelling or classifica-
tion in other applications. We apply them to voice quality
classification.

4.1. Definition of HMM

An HMM is a finite state machine which consists ofN

states. For every observationo(t) of an observation se-
quenceO an underlying stateq(t) is assumed. In each
state symbols with a corresponding probability are emit-
ted. So,bj(k) is the probability for being in statej and
emitting the symbolk. For every time instant the state
of the HMM can change. The probability for a transition
from statei to statej is aij .

4.2. Classifying with HMM

In general classification applications, for each class an
own model is generated during the training phase, using
the Baum-Welch algorithm [9]. The unknown patterns
that have to be tested in the training phase are evaluated
by every model. For every HMM we get a likelihood
for the tested observation sequenceO. The HMM which
has the highest likelihood determines the class of the un-
known pattern, see Fig. 2. In our approach we use a
different procedure, training only one HMM model for
all voice qualities, see section 4.4.

Figure 2: Classifying with HMM

4.3. Classifying voice qualities

We apply the classification with HMM to the problem of
voice quality recognition. For this application a left-to-
right model as used in ASR is not suitable, since a special
voice quality does not occur at a specific time during an



utterance. Thus, we use the ergodic model shown in Fig.
3. Here, all state transition are allowed. The number of
states is equal to the number of voice qualities contained
in the database which is 4 in our case. For every speech
segment of an utterance the 6-dimensional feature vector
x(t) is extracted. With the help of the vector quantization,
for every feature vectorx(t) the corresponding symbol
o(t) is obtained. Therefore the k-means algorithm is ap-
plied, using 100 iterations. For one of the 4 statesj one of
16 observationsk with probabilitybj(k) can be emitted.
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Figure 3: Ergodic HMM with four states and 16 symbols

4.4. Extraction of voice quality contours

Training an HMM for every voice quality would result in
a classification of a whole utterance to one voice quality.
This implies that the adopted states can only be compared
within one model. But we aim for a classification on the
segmental level. Since the voice quality is not fixed dur-
ing an utterance the classification of single analysis seg-
ments is more relevant than the classification of whole
utterances. Therefore only one HMM is trained with the
help of the Viterbi algorithm which considers only the
most likely state sequence. That means for every time in-
stant the HMM adopts one state that can be interpreted.
Although the states are hidden, they can have a physical
meaning. We found out that, in analogy to ASR where a
state corresponds to a phoneme, for voice quality recog-
nition a state can be associated with a voice quality.

4.5. Associating voice qualities with HMM states

The most likely state sequence for the training utterances
is generated using the Viterbi algorithm and a histogram
for each voice quality is extracted. By searching the most
frequently state for one voice quality a unique mapping
between the state and the voice quality is established. Ta-
ble 1 shows an example. We can see that for creaky voice
in 81.5% of the cases state 4 occurs. Thus, the row for
creaky and also the column for state 4 are deleted from
the matrix since there is now a mapping. For the remain-
ing matrix again the maximum value is searched, the re-
lationship is built, and the corresponding row and column

are deleted. This procedure is repeated until the matrix is
empty and all states are mapped to a voice quality.

vq / state state 1 state 2 state 3 state 4
modal 0.083 0.210 0.697 0.010
breathy 0.181 0.707 0.108 0.004
creaky 0.136 0.034 0.015 0.815
rough 0.578 0.100 0.266 0.056

Table 1: Analysis of voice qualities and states

5. Results

In this section results for the segmental classification of
voice qualities are presented. First, the performance of
our approach using a discrete 4-state HMM is compared
with a clustering using the well known k-means algo-
rithm. Then, two exemplary contours of utterances with
changing voice quality are plotted.

5.1. K-MEANS vs. HMM

There are only very few databases available that contain
non-modal voice qualities to a greater extent. For our first
study 563 utterances, with over 58000 segments, spoken
by four male speakers are used. Each utterance contains
only one of the four voice qualities.

Here, the speaker dependent classification of voice
qualities on a segmental level is studied. Therefore, our
proposed approach using HMM is compared to the k-
means algorithm. To get the reference class for each seg-
ment, we assumed that every segment of the utterance is
spoken in the same voice quality. Thus, all segments of a
sentence are labelled with the same voice quality. Table
2 shows the confusion matrix of segmental voice quality
recognition using the k-means algorithm and HMM.

K-MEANS modal breathy creaky rough
modal 37.9 9.5 38.4 14.2
breathy 28.6 42.8 11.6 17.0
creaky 13.7 11.4 64.3 10.6
rough 24.1 16.7 34.5 24.7
HMM modal breathy creaky rough
modal 38.9 9.2 17.4 34.5
breathy 18.4 56.9 5.5 19.2
creaky 7.3 12.8 77.1 2.8
rough 15.0 15.1 8.6 61.3

Table 2: Segmental voice quality classification

As we see, our proposed 4-state HMM outperforms
the k-means algorithm for all voice qualities. The great-
est difference between k-means and HMM is observed
for rough voice with 36%. For k-means, rough voice is
mostly classified to creaky voice, whereas HMM is right
for 61.3% of the segments. The overall classification rate
is improved by 11.4%.



5.2. Voice quality contours for mixed voice qualities

For extracting the contours further utterances spoken by
the same speakers with two changing voice qualities are
used. The first part is uttered non-modal while the second
part is spoken in modal voice.

Two voice quality contours are exemplary extracted
using our proposed 4-state HMM. Every voiced speech
segment, for which the feature vector could be calcu-
lated is assigned to one voice quality. The remaining
segments are rejected as invalid. In Fig. 4, the contour
of a creaky and modal voice is depicted above the corre-
sponding waveform. For the first part the contour adopts
solely the state that can be associated with creaky voice.
For the second part mainly modal voice is recognized.
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Figure 4: Voice quality contour of a first creaky and then
modal voice

The first part of the second utterance is spoken in
breathy voice, the second part contains mainly modal
voice quality. Fig. 5 shows the extracted voice quality
contour. One can see, that for all valid segments in the
first part breathy voice is classified. For the second part a
mix of mainly modal and creaky voice is recognized. A
few breathy and rough segments are also detected.
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Figure 5: Voice quality contour of a first breathy and then
modal voice

6. Conclusions

In this paper we presented a method for extracting voice
quality contours using discrete hidden Markov models.
As feature vector a 6-dimensional voice quality parame-
ter vector is used. Thereby, the Viterbi algorithm is used
to generate the most likely state sequence of the trained
model. Every state of the HMM can be interpreted as
a discrete voice quality defined by Laver. So each seg-
ment can be associated with a voice quality. Doing so
for every segment of a spoken utterance a voice quality
contour is extracted. We showed that our 4-state HMM
outperforms the k-means clustering by over 11% on the
segmental level. The generated voice quality contours co-
incide with the perceived voice quality for the utterances
recorded in an anechoic room.
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