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ABSTRACT

This paper investigates the influence of different types of dis-
turbances to the estimation of voice quality parameters. Here,
voice quality is not only based on the pitch or pitch con-
tour as in many approaches. The parameters are estimated
by spectral gradients of the vocal tract compensated speech
signal. We present a set of five parameters for describing the
voice quality. They are used to distinguish between gender,
voice qualities, and many emotional states of the speaker. We
estimate them from speech signals which are corrupted by
background noise and room reverberation. The paper demon-
strates a certain degree of robustness of the voice quality pa-
rameters against these real world disturbances.

1. INTRODUCTION

Voice quality, in contrast to other areas in speech processing,
is a less explored field. It is a paralinguistic i.e. nonverbal
part of speech communication. Voice quality describes the
kind of phonation of speech utterances like modal, breathy or
creaky voice. Emotions may influence voice quality. Together
with pitch and duration, voice quality contributes to speech
prosody. By evaluating the voice quality, the listener obtains
information about the physical, psychological, and emotional
characteristics of a speaker.

Former investigations have shown that the voice quality
parameters allow the distinction between different speaking
groups like gender [1], pathological and nonpathological spe-
akers [2], and word stress [3]. Other potential applications
in speech analysis are emotion detection, speaker identifica-
tion, and improved speech recognition. One application in
speech synthesis is the improved naturalness of the synthe-
sized speech by incorporating voice quality features.

Unfortunately, all studies up to now assumed clean speech
signals. In this paper, we study the robustness of voice quality
parameters under background noise and room reverberations.
The voice quality parameters are tested in three applications
concerning gender, voice quality, and emotion.

The paper is organized as follows. Section 2 presents the
voice quality estimators. In section 3, the speech data of dif-
ferent applications and their disturbances are described. The
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robustness of the voice quality parameters is studied detailed
in section 4.

2. VOICE QUALITY

Voice quality is mainly affected by the excitation of the hu-
man voice that is called phonation. This means that the shape
of the glottal pulse is responsible for the voice quality that a
speaker is realizing. In contrast, all procedures that belong to
the articulation process affect the articulated sounds that all
together build the linguistic content of the speech.

Usually voice quality parameters are obtained from the
electroglottographical signal which is measured directly at
the glottis. Electroglottography (EGG) is a technique used
to record the laryngeal behavior indirectly by measuring the
change in electrical conductivity across the throat during spe-
aking.

2.1. Voice Quality Parameters

In the literature there are other methods for estimating pa-
rameters closely related to the voice quality or emotion. For
voice quality, the most common method is fitting a glottal
pulse model to the inverse filtered speech signal [4]. For de-
tecting emotions many approaches are mainly based on the
pitch contour of the speaker [5]. Some works involve prosodic
characteristics like intensity, word stress or rate of speech [6].

We propose a method to estimate the voice quality pa-
rameters directly from the acoustic speech signal. No extra
hardware and no invasion to the human body are required
to obtain the desired information. The method is based on
the observations by Stevens and Hanson [7] that the glottal
properties ”open quotient”, ”glottal opening”, ”skewness of
glottal pulse”, and ”rate of glottal closure” each affect the
excitation spectrum of the speech signal in a dedicated fre-
quency range and thus reflect the voice quality of the speaker.
They proposed to estimate these glottal states from the acous-
tic speech signal by adequate relation of the amplitudes of the
corresponding higher harmonics with that of the fundamental
mode. They further found that the first formant bandwidth
is correlated with the incompleteness of the glottal closure.
These measurements are simply called voice quality parame-
ters.

Our modified algorithm calculates spectral gradients in-
stead of pure amplitude ratios, because gradients better char-
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acterize the shape of the glottal signal spectrum. In addition,
a vocal tract compensation is performed prior estimating the
gradients [1]. The whole process can be divided into three
steps: measurement of speech features, compensation of the
vocal tract influence, and estimation of the voice quality pa-
rameters. Below we describe these steps in more details.

2.2. Measurement of speech features

The first step estimates some well known speech features from
windowed, voiced segments of the speech signal. We per-
form the voiced-unvoiced decision and the pitch estimation
according to the RAPT algorithm [8] that looks for peaks in
the normalized cross correlation function. The frequencies
and bandwidths of the first four formants are estimated by an
LPC analysis [9]. All frequency values are converted to the
Bark scala.

Feature Meaning

Fp pitch
F1, F2, F3, F4 formant frequencies
B1, B2, B3, B4 formant bandwidths
H1,H2 amplitude at Fp and 2Fp

F1p, . . . , F3p frequency of spectrum peaks near formants
A1p, . . . , A3p amplitude values at F1p, . . . , F3p

Table 1. Speech features used for voice quality parameter
estimation

2.3. Compensation of the vocal tract influence

Since the voice quality parameters shall only depend on the
excitation and not on the articulation process, the influence
of the vocal tract has to be compensated. The contribution of
each of the four formants to the spectrum at frequency f is
estimated by [10]
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They are removed from the amplitudes Hk and Akp in Table 1:
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The results of the formant compensation are the corrected
spectral amplitudes H̃1, H̃2 of the first and second harmon-
ics and the corrected peak amplitudes Ã1p, Ã2p, and Ã3p near
the three formants as shown in Figure 1.

2.4. Estimation of the voice quality parameters

The last step estimates the following five voice quality pa-
rameters from the vocal tract compensated speech features:

f [Barks]

sp
ectru

m
[d

B
]

0 Fp

H̃1

2Fp

H̃2

F1p
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Fig. 1. Vocal tract compensated peaks of the FFT spectrum
for the voice qulity parameter estimation

”Open Quotient Gradient”, ”Glottal Opening Gradient”,
”SKewness Gradient”, ”Rate of Closure Gradient”, and
”Incompleteness of Closure”. They are given by

OQG =
H̃1 − H̃2

Fp

GOG =
H̃1 − Ã1p

F1p − Fp

SKG =
H̃1 − Ã2p

F2p − Fp

RCG =
H̃1 − Ã3p

F3p − Fp

IC =
B1

F1

Figure 2 gives an illustration of the first four parameters as
spectral gradients with respect to the pitch frequency.
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Fig. 2. Voice quality parameters as spectral gradients

3. EXPERIMENTS: SPEECH AND DISTURBANCES

We use the voice quality parameters to distinguish between
different speaking groups in three studies: gender, voice qual-
ities according to Laver, and emotional states. All speech data
are recorded in an anechoic room at the sampling frequency
of 16 kHz.

3.1. Distinction between gender

The speech samples for the first study ware taken from [11].
They consist of 10 utterances of male and 10 utterances of
female speech, each of about 30 second duration.
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3.2. Distinction between voice qualities

The speech data for the second study are taken from the book
[12] by Laver. It contains utterances spoken in six differ-
ent voice qualities [13] by the same speaker: ”modal voice”,
”falsetto voice”, ”whispery voice”, ”breathy voice”, ”creaky
voice”, and ”rough voice”.

3.3. Distinction between emotional states

The speech data for the third study are from the ”Berlin data-
base of emotional speech” [14]. It contains about 500 sen-
tences spoken by actors in a neutral, happy, angry, sad, fear-
ful, bored, and disgusted way.

3.4. Real world disturbances

In order to study the robustness of voice quality parameters
under real world disturbances, the speech signals mentioned
above are distorted by noise and reverberation prior to esti-
mating the voice quality parameters.

3.4.1. Noise

Acoustic background noise can be very versatile in its char-
acteristics. It reaches from white noise over coloured noise to
time varying noise and the so called cocktail party noise that
consists of dozens of people talking in the background. We
add the following noise to the speech signal: ”white noise”,
”pink noise”, ”factory noise” and ”cocktail party noise”. The
degree of the noise is controlled by the global signal-to-noise-
ratio (SNR)

S NR(N) = 10 log

∑N
k=1 s2(k)
∑N

k=1 n2(k)
[dB]

where s(k) is the speech signal, n(k) the noise signal and N

the total number of speech samples.

3.4.2. Room Reverberation

Room acoustic effects can be modelled by the room impulse
response

h(t) =
∑

n

anδ(t − tn)

Every tap an represents one path from the source to the mi-
crophone. One measure for the degree of room acoustic is the
reverberation time T60. It is defined as the time in seconds
for the reverberation level to decay to 60 dB below the initial
level. In our experiments, simulated room impulse responses
according to the image method [15] are used.

4. RESULTS

The distinction between different speaking groups by using
voice quality parameters is realized by t-tests. The signifi-
cance level for all analysis was set to α = 0.05. In the Tables
2-4, the observed one-sided level of significance for gender
distinction is shown. A value smaller (larger) than α indi-
cates that the male and female speech signals can (not) be
distinguished from each other. Values smaller than α in in
boldface.

Table 2 shows the test results under white noise for a vary-
ing SNR. For clean speech with SNR =∞, all voice quality
parameters allow a distinction. If we decrease SNR to −10
dB, RCG and IC lose their discrimination capabilities while
OQG, GOG, and SKG are robust and stay significant. The
noise of a factory hall in Table 3 shows a similar behavior.
Only the parameters OQG and GOG become unsignificant
for lower SNR values. Table 4 shows the results for room
reverberations. Only the parameters GOG and SKG are con-
siderable affected by the distortion. The other parameters stay
significant at least until a reverberation time of T60 = 130 ms.

SNR OQG GOG SKG RCG IC

∞ 0.000 0.014 0.000 0.006 0.000

50 dB 0.000 0.022 0.000 0.012 0.000

25 dB 0.000 0.048 0.000 0.708 0.000

0 dB 0.000 0.000 0.000 1.000 1.000

-10 dB 0.000 0.000 0.000 1.000 1.000

Table 2. T-test for gender under white noise

SNR OQG GOG SKG RCG IC

∞ 0.000 0.014 0.000 0.006 0.000

50 dB 0.000 0.024 0.000 0.012 0.000

25 dB 0.000 0.032 0.000 0.151 0.000

0 dB 0.151 0.000 0.000 1.000 1.000

-10 dB 0.675 0.060 0.000 1.000 0.901

Table 3. T-test for gender under factory noise

T60 OQG GOG SKG RCG IC

0 0.000 0.014 0.000 0.006 0.000

60 0.000 1.000 0.261 0.000 0.031

130 0.003 1.000 0.827 0.000 0.016

160 0.083 1.000 0.673 0.000 0.000

Table 4. T-test for gender under room reverberation

Table 5 presents the number of distinguishable pairs from
six voice qualities under white noise disturbance. The total

number of pairs is
(

6
2

)

= 15. We see that even at an SNR

of 0dB, there is still a reasonable number of distinguishable
pairs. Figure 3 shows the mean values and the standart de-
viations of the parameter GOG for different voice qualities.
We see that 13 of all 15 pairs except for rough/creaky and
normal/falsetto differ in GOG.

Table 6 does the same analysis for seven different emo-
tional states under pink noise. For the noiseless case, high
numbers of distinguishable emotional states are noticeable.
Like for voice qualities, there is still an appropriate number
of distinguishable pairs for emotions, even at an SNR of 0dB.
In Figure 4 we see that 20 of 21 pairs of emotions except for
fearful/neutral differ in the feature SKG.

5. CONCLUSION

This paper introduced voice quality parameters and demon-
strates their potential use to distinguish between speaking
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S NR OQG GOG SKG RCG IC total

∞ 13 13 9 12 8 55

40 dB 14 13 10 12 10 59

20 dB 13 13 9 12 8 55

0 dB 12 12 10 11 7 52

-20 dB 1 0 0 0 0 1

Table 5. Multiple t-tests for voice qualities under white noise

Ŧ3 Ŧ2 Ŧ1 0 1 2

whispery

rough

normal

falsetto

creaky

breathy

GOG

Fig. 3. GOG for six voice qualities (SNR = 20 dB)

groups like gender, voice qualities, and emotional states. It
also showed that some of the voice quality parameters are
quite robust adverse acoustic background noise and room re-
verberations. They remain significant in feature distinction
under disturbances in a wide range of SNR. This is a first
step forward to the long-term objective of building simple
but robust classificators for different speaking groups. First
classification tests have been done for gender, emotion, and
voice quality but could not be presented here due to the lim-
ited space of the paper. Some of the promising results are
reported in [16].
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