
DISCUSSION ON THE BOTTOM-UP SYNTHESIS OF CONSISTENT GRAPHS:
DATEMM REVISITED

Martin Kreißig and Bin Yang

Chair of System Theory and Signal Processing, University of Stuttgart
email: {martin.kreissig, bin.yang}@lss.uni-stuttgart.de

ABSTRACT

In this paper we discuss the synthesis algorithm DATEMM, which
finds consistent graphs in a TDOA based speaker localization sce-
nario. We analyse it in terms of complexity and point out the short-
coming of this algorithm, that not all possible solutions are found.
Then we present an improved algorithm to fix this problem. Finally
we verify our analysis through simulations and give a comparison
to other synthesis algorithms.
Keywords: Efficient Graph Synthesis, Consistent Graphs, Speaker
Localization, DATEMM

1. INTRODUCTION

There are some applications in signal processing where the differ-
ence measure wi j = pi− p j of two measurements pi and p j of sen-
sors i, j plays an important role. Among others we focus on time
difference of arrival (TDOA) based speaker localization where the
sensors are microphones and the measure wi, j is the TDOA ob-
tained by evaluating the generalized cross-correlation function. As
another application we see the sensor fusion in automotive driver
assistance systems where the sensors are radar or video and one ob-
tains relative distance and velocity measurements between vehicles.
Unfortunately, the measurements can often not be assigned directly
to one object, like the speaker or the vehicle to be located, because
they are taken from peaks of a signal. The ambiguity increases even
more when we take into account the multi-path propagation due to
reflections.

Hence we propose a preprocessing step to reduce the combi-
natorial complexity. This step is based on the simple property that
the sum of measures of one target is zero at a set of neighboured
sensors:
wi j+w jk+ . . .+wli = pi− p j+ p j− pk+ . . .+ pl − pi = 0 (1)

The proposed approach intends to minimize the time, neces-
sary to obtain the set of difference measures for one target, while
keeping all solutions.

In this paper we first give a short introduction to the notations
we use that stem from graph theory. Then we summarize a known
algorithm for the specified problem called DATEMM introduced
by [1] and improved in [2] and point out its shortcoming. Finally
we propose an improved algorithm to obtain all solutions.

2. GRAPH THEORETICAL DESCRIPTION

A graph G(V,E,w) is given by its vertex set V = {v1, . . . ,vM} of
M = |V| elements and edge set E = {e1, . . . ,eN} with N elements.
The graphs considered here are simple, directed and weighted with

weight vector w = [w1, . . . ,wN]
T ,wn : en → R. That means, the

graphs have no parallel edges and edges are defined by a start and
end vertex, which must be different (no loops on the same vertex).

A complete graph is described by Nmax =
(
M
2

)
edges, where

each vertex shares an edge with all other vertices.
The combinatorial problem that arises is the assignment of

Kn possible values per edge en, defined by its weight set Wn =

{w1
n, . . . ,w

Kn
n }. The brute-force search for those assignments that

fulfill (1) requires a test of all ∏
N
n=1Kn combinations, which is ob-

viously very inefficient. An example of a complete, weighted graph

withM = 6 vertices and weight set cardinality of Kn = 1∀n is plot-
ted in Fig. 1.

v1

v2

v3

v4

v5

v6

1
2 4

2

3

1

3

1

2

2

0

1
−2

−1

1

Figure 1: A complete graph with M = 6 vertices and single edge
weight.

In [3, 4] we proposed and discussed an efficient synthesis al-
gorithm to find those assignments that fulfill a zero cyclic sum
condition along all loops in the graph. We call these graphs con-
sistent graphs in the following. The approach in [3] is based
on a fixed topology of the graph, which leads to a set of funda-
mental loops. These are used to apply Back-Tracking, a known
search algorithm from artificial intelligence [5], on the search space
W = W1× ·· ·×WN . In this paper we focus on an approach that
starts from consistent triples, which means small cycles of three
edges that have a zero cyclic sum, and synthesize the complete
graph in a bottom-up way.

3. DATEMM REVISITED

3.1 Summary

DATEMM (Disambiguation of TDOA Estimation in Multipath
Multisource environments) [1] contains the subsequent steps, to
synthesize the consistent graphs in a given setup G(V,E,w) ,w ∈
W1 × ·· ·×WN , one by one. A triple t is a graph defined by the
set of 3 vertices Vt = {v1,v2,v3}, 3 edges Et defined as the set
of directed pairs Et = {en = (u,v) : u,v ∈ V,u 6= v} and the corre-
sponding weight vector wt , thus t = (Vt ,Et ,wt). We use V (t) to
refer to the vertex set of t, E(t) to reference its edge set and w(t)
for its weight vector, respectively.

S1 Find all consistent triples and save them to the triple set T.
In Fig. 2 below, the consistent triples composed from the
vertices v1,v2,v3, and v4 of Fig. 1 are shown.

S2 Take an initial triple, e.g. the vertices {v1,v2,v3} (solid
lines), and find all neighboured triples. This creates the
set Qq of consistent quasi-quadruples, whose elements are
subgrpahs consisting of 4 vertices and 5 edges. In Fig. 3
the quasi-quadruples of Fig. 2 are plotted.

S3 Merge all quasi-quadruples that share common edge
weights to complete, consistent quadruples (in the follow-
ing only quadruples for short). For Fig. 3 we obtain the
quadruple of Fig. 4(a).

v1

v2

v3

1
2

1

v2

v3

v4

1

3

2

v1

v2 v4

1
4

3
v1

v3

v4
2

4

2

Figure 2: All possible triples of the subgraph, spanned by the ver-
tices v1,v2,v3, and v4 from Fig. 1.

v1

v2

v3

v4

1
2

1

3

2

v1

v2

v3

v4

1
2

1

4

2

v1

v2

v3

v4

1
2

1

3

4

Figure 3: All possible quasi-quadruples created by the 4 vertices of
Fig. 2.

v1

v2

v3

v4

1
2

1

3

4

2

(a) Quadruple generated

by the quasi-quadruples

of Fig. 3.

v1

v2

v3

v4

v5

v6

1
2 4

2

3

1

3

1

2

2

0

1
−2−1

1

(b) Complete consistent graph gener-

ated by concatenating all quadruples

that include the initial triple.

Figure 4: The last two steps to synthesize one complete consistent
graph.

S4 When merging two quadruples that include both the initial
triple, there is always an edge missing between vertices,
which do not belong to the initial triple. In Fig. 4(b) these
edges are plotted as dotted lines. To complete the graph
we search in T for triples that include the missing edge and
which do fit with two neighboured edges.

S5 Remove all used triples from the triple set.

S6 If there are still triples left in the triple set, select a new ini-
tial triple and go back to S2 to synthesize the next consistent
graph.

3.2 Analysis

This synthesis approach is straightforward. The entities at each
step represent a consistent subgraph and hence a partial solution to
the problem. Remember that the brute-force approach checks all
branches of a tree as shown in Fig. 5 for 3 edges. This leads to

∏
N
n=1Kn possible combinations.
DATEMM divides this tree in blocks having three levels each

like in Fig. 5, that represent the three edges of a triple. A block has

K̂ ≤ K3 consistent outputs for Kn = K, (1≤ n≤ N). All these out-
puts define triples that share the same vertices and edges and differ

w1
1

w2
1

w3
1
· · · w3

k
w3
K3

w2
2

· · · w2
K2

w1
2

w2
1 w2

i

w3
l

w2
K2

w3
n

· · · w1
K1

· · · w2
j

w3
m

w2
K2

V (t) = {v1,v2,v3}

Figure 5: Weight assignment for a topological triple τ . The dashed
lines illustrate the brute-force combinations while the solid lines
represent the K̂τ consistent assignment of a triple.

only in their weights. Thus we introduce the topological triple as
τ = (Vt ,Et) that defines the underlying edges and vertices. We de-

fine K̂τ as the number of consistent assignments to the topological

triple τ . There exist T =
(
M
3

)
different topological triples in a com-

plete graph. Thus we obtain ∑
T
τ=1 K̂τ ≪ ∏

N
n=1Kn solution branches

after the triple generation.

Without any further assumptions, we can only state that K̂τ =
K3. Due to the concatenation of triples, this number decreases be-
cause, given a fixed triple and a topological triple, being added

with one common edge, we obtain less than K2 possible solutions
for the merged topological quasi-quadruple, because the common
edge is already assigned. Thus the complexity of DATEMM is even

smaller: CDATEMM < ∑τ K̂τ , with K̂τ = K3.
DATEMM has been shown to perform very well for speaker

localization [1] in terms of efficiency, but it has the shortcoming of
not finding all solutions in a given search space W = W1 × ·· ·×
WN .

3.3 Shortcoming of DATEMM

Having a detailed look at the weight assignment of DATEMM, we
can draw a tree like given in Fig. 6 where the step S1 represents the
initial triple assignment. In step S2 we add a triple which leads to
quasi-quadruples and in S3 we obtain complete quadruples. Then
we merge quadruples which are illustrated as a list of triples along
a branch in Fig. 6.

t1

t4

t5

...

t5 · · · t6

...

t̃6

t2

t7

...

· · ·

t3

· · ·

S1

S2

S3

Figure 6: Triple assignment that leads to a conflict

Generally, we have an arbitrary number of triples that fit to an
initial triple. In our example, the triples t4, t5, t6 and t̃6 show a com-
mon edge (weight) with the initial triple t1. DATEMM always starts
with the most likely triple. Let’s assume this is the quasi-quadruple
t1∪ t4. The ∪-operator defines the union of the specific elements of
the triples: t1∪ t4 = G(V (t1)∪V (t4),E(t1)∪E(t4),w(E(t1∪ t4)).

In S3 we merge with those quasi-quadruples that include t1,
which is t1 ∪ t5 in our case. After the addition of quasi-quadruples

we finally add some triples which creates the most left branch in
Fig. 6. When the consistent graph steming from t1 is synthesized,
we remove the used triples and proceed with the next initial triple
t2.

Let’s assume that t̃6 has different weights on the same topolog-
ical triple as t6. Then t̃6 will not occur in the branch of t4. But the
removal of triples defined in DATEMM prevents us from finding
the graph being synthesized with the combination t1, t4, t5 and t̃6.

Tab. 1 shows an example of such a circumstance. There are
three consistent graphs w1,w2 and w3 of a graph with M = 6 and
N = 15 (complete). Let’s assume that the triple set will lead to w1
at first. By excluding these triples from the subsequent synthesis,
we prevent the algorithm to find w3 completely, which includes the
triple {v1,v2,v6} with weights w1 = 1,w5 =−2 and w9 =−3.

w1 w2 w3

e1 = (v1,v2)∼W1 : 1 2 1
e2 = (v1,v3)∼W2 : -2 3 1
e3 = (v1,v4)∼W3 : 1 4 2
e4 = (v1,v5)∼W4 : 2 5 3

e5 = (v1,v6)∼W5 : -2 3 -2
e6 = (v2,v3)∼W6 : -3 1 0
e7 = (v2,v4)∼W7 : 0 2 1
e8 = (v2,v5)∼W8 : 1 3 2

e9 = (v2,v6)∼W9 : -3 1 -3

e10 = (v3,v4)∼W10 : 3
�

�

�

�1
�

�

�

�1

e11 = (v3,v5)∼W11 : 4
�

�

�

�2
�

�

�

�2
e12 = (v3,v6)∼W12 : 0 0 -3

e13 = (v4,v5)∼W13 : 1
�

�

�

�1
�

�

�

�1
e14 = (v4,v6)∼W14 : -3 -1 -4
e15 = (v5,v6)∼W15 : -4 -2 -5

Table 1: Example of three different consistent graphs that are not
all found by DATEMM

4. PROPOSED ALGORITHM EXTENSION

4.1 Change order of comparison

The first improvement that we suggest is the change of the order
in which we append the triples to the current subgraph. While
DATEMM performs this in a straightforward manner (one com-
pared to all), we apply a rather horizontal scan and compare all
triples at stage S2 with each other. Figure 7 illustrates these com-
parisons as dashed lines (for the synthesis branch with initial triples
t1). This is necessary to find all combinations related to the initial
triple at the root of a branch. If we skip this, the first added triple
will determine the consistent graph to be found.

We see that all possible combinations are checked in Fig. 7.
Then we can remove the triples from the set.

t1

t4 t5 · · · t6 t̃6

· · ·t5 t6 t̃6

Figure 7: The new assignment structure is horizontal

4.2 Introduction of a queue

When checking all combinations of triples and quadruples we still
face the problem that the synthesized consistent subgraph may col-
lidate with the current quadruple’s triple, as explained in the pre-
vious section with triple t̃6. If we skip this, we would miss the

solution including (t1∪ t4 ∪ t5)∪ t̃6 because t4 is already processed
then.

Therefore we introduce a queue Q to track those subgraphs
that create a new consistent solution branch with a partition of the
current subgraph. Each time we detect a collision of edge weights,
but the remaining ones match, we append the new weight combi-
nation to Q. When the current synthesis is finished, we go back to
the queue and process the next element, until the queue is empty.
Thus we do not miss a solution.

4.3 Summary

One may point out that the removal of triples in one solution branch
excludes its reuse in other graphs. This problem is solved by the
circumstance, that a triple with multiple usages has been saved in
the quadruple set and can still be used.

Both described improvements, the comparison of all triples
against each other that are connected to the initial triple, and the
introduction of a queue, enable us to find all consistent graphs.

5. SIMULATIONS

5.1 Setup description

We tested our algorithm whether it finds all solutions. As shown in
[4] and explained in Sec. 3.3, we cannot assume a fixed number of
consistent graphs in a simulation setup because the superposition
of solutions may create new consistent graphs. But to reduce the
influence of random, additional, consistent graphs, we apply the
following algorithm to generate edge weights. For a given setup of
M vertices and K desired consistent graphs:

1. compute random potentials for all vertices

2. calculate difference measures (consistent by definition)

3. compare them to previous weights on each edge

4. if the weights are unique, save them else go to 1

5. while number of graphs < K go to 1

Thus the algorithm finds most likely those graphs defined in the
generation, which gives a more objective comparison of the perfor-
mance with other synthesis algorithms.

The algorithm was implemented in C++.

5.2 Verification of the complexity approximation

For T =
(
M
3

)
triples in a complete graph and Kn = K weights that

belong to one consistent graph each, we derived in Sec. 3.2 that

the number of consistent graphs after step S1 is TK̂τ . When we

assume K̂τ = K, i.e. K consistent triples for each topological triple,
we obtain the bottom line in Fig. 8 as the number of consistent

triples. Assuming no further improvements we would obtain K3

outputs of each topological triple, which is related to the topmost
line in Fig. 8. From our measurements we obtained the solid lines,
which represent either the number of triples |T|measured or quasi-
quadruples |Qq|measured.

We see that the number of triples fits nearly to K̂τ =K for small
weight sets and increases a bit for larger weight sets. The number
of quasi-quadruples increases similiar to the triples, but with an
logarithmic offset. We can also derive from the plot that the number
of entities is closer to the theoretical number of triples than to all

combinations K̂τ = K3, which illustrates the complexity reduction
in terms of deleted possible branches in the weight assignment.

The cardinality of the consistent quadruple set and other con-
sistent subgraph sets decreases quickly, as we are merging them
instead of adding new possible combinations.

5.3 Validation of the theoretical performance

The improvements mentioned are strongly dependent on the struc-
ture of the weight setW, which means how and if the weights create
consistent subgraphs. In Fig. 9 we see the runtime t of the new al-
gorithm in seconds, plotted over the number of weights per edge

for M = 5 and M = 7 vertices. Moreover the complexity C = TK3

is plotted in dashed lines.

5 10 15 20 25 30
101

102

103

104

105

106

K

n
u
m
b
er

o
f
en
ti
ti
es

|T|measured

|Qq|measured

TK

TK3

Figure 8: Verification of the estimated possible combinations
for M = 5 vertices, with the measured cardinality of the triple
set |T|measured and the quasi-quadruple set |Qq|measured, K =

|Wn| ∀1≤ n≤ N and T =
(
M
3

)
.

The simlar shape of both plots, the theoretical complexity and
the measured runtime, shows us that our algorithm scales overall

withCnew =O(TK3). This is reasonable, because once all K3 com-
binations per topological triple are checked, the remaining compu-
tations are just comparisons of edges. Thus most of the computa-
tion is due to the synthesis of consistent triples.

5 10 15 20 25 30

10−3

10−1

101

103

105

K

C
[o
p
]
/
t
[s
ec
]

tM=5

CM=5

tM=7

CM=7

Figure 9: Validation of the theoretical complexity C and measured
runtimes t of the new algorithm for M = 5 and M = 7 vertices.

5.4 Comparison to DFS-BT

We compared the runtime of this new approach to the runtime of
the algorithm DFS-BT of [3], which counts to the family of Top-
Down algorithms. It is shown in [3] that DFS-BT scales strongly

with O(KM).
In Fig. 10 we plotted the runtimes t for both algorithms over

K. It is interesting to see, that for M = 7 the influence of K on
the runtime is bigger for DFS-BT than for our new algorithm. For
M = 5 it is not and the new algorithm performs worse.

Another strong advantage of the new approach is that all inter-
mediate solutions represent a consistent solution themselves. This
is not the case for DFS-BT so far, where we can only find consistent
solutions for the complete graph due to its topology scan.

The brute-force approach would scale with CBF = O(KN) for

N =
(
M
2

)
. Compared to this both algorithms show a big improve-

ment as they scale with CDFS−BT = O(KM) and CDATEMM,new =

O(TK3).

5 10 15 20 25 30
10−3

10−2

10−1

100

101

102

103

K

ru
n
ti
m
e
[s
ec
]

DATEMMnew,M=5

DFS-BTM=5

DATEMMnew,M=7

DFS-BTM=7

Figure 10: Comparison of the runtime of the new approach and the
synthesis algorithm DFS-BT of [3]

6. CONCLUSION

We presented an extended algorithm based on DATEMM to find all
consistent graphs in a given data set G(V,E,W). This new algo-
rithm solves the shortcoming of DATEMM to miss solutions, while
it exploits the Bottom-Up strategy. Compared to another synthe-
sis algorithm of the Top-Down family, our new algorithm performs
better, when the weights per edge increase.

REFERENCES

[1] Jan Scheuing and Bin Yang, “Disambiguation of TDOA es-
timation for multiple sources in reverberant environments,”
Transactions on Audio, Speech and Language Processing,
vol. 16, no. 8, pp. 1479–1489, Nov. 2008.

[2] C.M. Zannini, A. Cirillo, R. Parisi, and A. Uncini, “Improved
TDOA disambiguation techniques for sound source localiza-
tion in reverberant environments,” in Circuits and Systems
(ISCAS), Proceedings of 2010 IEEE InternationalSymposium
on, 2010, pp. 2666 –2669.

[3] Martin Kreißig and Bin Yang, “Efficient synthesis of consis-
tent graphs,” in 2010 European Signal Processing Confer-
ence (EUSIPCO), 2010, pp. 1364–1368.

[4] Martin Kreißig and Bin Yang, “A graph theoretical frame-
work for consistent time differences of arrival,” in ITG Fach-
tagung Speech Communication 2010, 2010.

[5] Stuart Russell and Peter Norvig, Künstliche Intelligenz. Ein
moderner Ansatz, vol. 2, Pearson Studium, 2004.

