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Abstract— This paper considers a linear precoding for a
Kalman filter which receives the measurements over an erasure
channel. We show how to design the precoding matrix that
either robustifies the Kalman filter with respect to packet
losses or reduces the estimation error. The effectiveness of the
proposed method is demonstrated by two examples.

I. INTRODUCTION

Motivated by recent progress in microcontroller and net-

work technology, more and more control loops are closed

using a packet based digital network. Unfortunately, this

approach also brings a fundamental problem: the delay or

loss of packets during data transfer. Consequently, the control

and estimation over unreliable networks has become a very

interesting and active research area.

In this work, we will study the state estimation problem

over a lossy network. Fig. 1 shows a block diagram of such a

networked control system. The measurements are transmitted

to the state estimator via a network where measurements

may get lost. The goal of this paper is to robustify this

transmission. We will consider a linear precoding of the mea-

surements to combat the erasures that may occur. Therefore,

we assume that all observations are available to the precoder

before they are transmitted. The scheme as shown in Fig. 1

has received a lot of attention in the past and the following

paragraph provides an overview of the literature.

One approach to estimate the state of a system over a

lossy network is the usage of smart sensors. A smart sensor

is composed of the sensor itself and a Kalman filter to

estimate the plant state. Now, the estimate x̂t is sent instead

of the measurements yt. This approach has the advantage

that the current estimation error does not depend on previous

losses. In [1], this is done by an encoder and decoder. In

order to reduce the necessary bandwidth, it is suggested

in [2] to add an open-loop estimator at the remote side and

different scheduling schemes, when to send the estimate are

presented. However, this scheme is only applicable if enough

computational resources are available at the sensor side.

A series of contributions on Kalman filtering with inter-

mittent measurements was started by [3]. In [3], the authors
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Fig. 1. State estimation over digital network

assume that either all the measurements are received, or they

are completely lost. It turns out that the optimal Kalman

filter is an ordinary time-varying Kalman filter. The excellent

contribution in this work are convergence criteria for the

covariance matrix. Often, only a part of the measurements

will arrive. Thus, [3] was extended to the case of two

independent channels in [4] and to the case of p channels

in [5].

In order to minimize the distortion for a given bitrate,

[6] used scalar quantizers for Multiple Description Coding

(MDC) to code the measurements. This increases the ro-

bustness of the system as the number of available bits are

split into two independent streams that are transmitted. If

only one of the two streams is available, then the original

measurement can still be approximately recovered. However,

this approach has two drawbacks:

• Classical MDC is designed to minimize the mean squared

error between the original sent signal yt and the re-

constructed signal ȳt at the receiver. However, in state

estimation we are more interested in a small error between

the state xt and its estimate x̂t opposed to a good

reconstruction of the measurements.

• The statistical properties of the output vector yt change

with time. In classical MDC, however, most methods as-

sume that the signal statistics are time-invariant. Therefore,

we can not apply the classical MDC methods directly.

Often, this difficulty is circumvented by considering the

steady state which is also done in this work.

In this work, we extend the approach of [3] and [4] by

introducing a precoder such that either the Kalman filter can

tolerate a higher packet loss rate or the estimation error is

reduced.

A. Motivating Example

Before the main theorems are presented in Sec. III, we

will motivate this approach with the following simple but
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illustrative discrete-time system: xt+1 = [ 2.5 0
0 2 ]xt. More-

over, we assume that both states are measured directly, i.e.

yt =
[

yt,1 yt,2

]′
= xt and the two measurements are

send over a network in individual packets. Obviously, the

system is observable as long as both measurements arrive.

Unfortunately, the system is no longer observable, if one of

the measurements is lost. Note that the observability is a

fundamental condition for the design of an observer.

Now, suppose we do not transmit the measurements di-

rectly but send the following virtual measurements ỹt,1 =
yt,1 + yt,2 and ỹt,2 = yt,1 − yt,2 instead. Since this trans-

formation, called correlating transform for obvious reasons,

is invertible, there is no difference to the original system as

long as both measurements arrive. However, the system is

still observable if one of the virtual measurements is lost.

As a consequence thereof, the observer will be more robust

against packet losses.

B. Multiple Description Coding

Although, we motivated this approach by the loss of

observability, such a precoding is very well known in the area

of Multiple Description Coding (MDC). Multiple description

coding aims at transmitting information over a channel which

randomly erases elements. For an overview of MDC see [7].

One possibility to cope with such an erasure channel is

the usage of a correlating transform, e.g. [8]–[10]. The

correlating transform in classical MDC is chosen such that

the average distortion is minimized. We will apply the same

principle to a Kalman filter which receives its measurements

over an erasure channel. However, in this work we optimize

the correlating transform with respect to the estimation error

of the Kalman filter and the robustness against measurement

losses. The contribution of this paper is therefore the design

of an optimal correlating transform which generates the

virtual measurements that are transmitted. Note that the

proposed approach can also be applied in connection to the

design of a robust linear-quadratic regulator.

Motivated by the example above and the widespread use

of such a precoder in MDC, we will proceed as follows:

In Sec. II we recall the results on Kalman filtering with

intermittent measurements and describe the channel model

and precoding in detail. In Sec. III we combine these ideas

and consider the Kalman filtering with linear precoding.

Finally, Sec. IV provides simulation results for two examples

and Sec. V concludes the work.

II. PRELIMINARIES

In this section, we first repeat the results for Kalman

filtering with intermittent measurements. Then we describe

our channel model and the precoding.

A. Kalman Filtering with Intermittent Measurements

In this section, we briefly repeat the results of [3]. Al-

though these results have been extended to the case of

two and more channels in [4] and [5], we stick to [3] for

simplicity.

We consider the following discrete time system

xt+1 = Axt + wt,

yt = γtCxt + vt, (1)

where xt ∈ R
n is the system state and yt ∈ R

m the

measurement output at time instance t. wt ∈ R
n and vt ∈

R
m are Gaussian white noise vectors with zero mean and

covariance matrix Q ∈ R
n×n and R ∈ R

m×m, respectively.

Moreover, γt ∈ {0, 1} is an independent and identically

distributed (iid) random process with E[γt] = λ, which

indicates whether or not a measurement arrives.

First, we define

x̂t|t := E[xt|It]

Pt|t := E[(xt − x̂t)(xt − x̂t)
′|It]

x̂t+1|t := E[xt+1|It]

Pt+1|t := E[(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
′|It]

where It is the information available at time t, i.e. y0, . . . ,yt

and γ0, . . . , γt. Note that tr{Pt+1|t} = E‖xt+1 − x̂t+1|t‖2
2,

is the mean squared error between the true and the estimated

state which we will use in Sec. III to find the optimal

precoding.

The time update of the Kalman filter is

x̂t+1|t = Ax̂t|t, (2)

Pt+1|t = APt|tA
′ + Q, (3)

which is identical to the case of no measurement losses. The

measurement update becomes

x̂t+1|t+1 = x̂t+1|t + γt+1Pt+1|tC
′
(

CPt+1|tC
′ + R

)−1

× (yt+1 − Cx̂t+1|t), (4)

Pt+1|t+1 = Pt+1|t − γt+1Pt+1|tC
′
(

CPt+1|tC
′ + R

)−1

× CPt+1|t. (5)

Both x̂t+1|t+1 and Pt+1|t+1 are now random variables,

depending on γt+1.

Using the shortcut Pt := Pt|t−1, (3) and (5) can be written

as

Pt+1 = APtA
′+Q−γtAPtC

′ (CPtC
′ + R)

−1
CPtA

′. (6)

In order to derive an upper bound of E[Pt], the Modified

Algebraic Riccati Equation (MARE) gλ(X) is defined as

follows:

gλ(X) = AXA′ +Q−λAXC ′ (CXC′ + R)
−1

CXA′

(7)

After these definitions, [3] showed that there exists a

critical arrival rate λc which determines whether E[Pt] is

bounded or not and give an upper bound for λc and E[Pt].
Theorem 1 ([3]): If (A, Q

1

2 ) is controllable, (A, C) is

detectable, and A is unstable, then there exists a λc ∈ [0, 1)
such that

lim
t→∞

E[Pt] = +∞, for 0 ≤ λ ≤ λc and ∃P0 ≥ 0 (8)

E[Pt] ≤ MP0
∀t, for λc < λ ≤ 1 and ∀P0 ≥ 0 (9)
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Fig. 2. State estimation over digital network with linear precoding

where MP0
> 0 depends on the initial condition P0 ≥ 0.

Unfortunately, λc can not be calculated directly, but an

upper bound λ̄ can be found as follows:

Theorem 2 ([3]): The upper bound λ̄ is given by the

solution of the following optimization problem

λ̄ = arg min
λ

Ψλ(Y, Z) > 0, 0 ≤ Y ≤ I, (10)

where

Ψ(Y, Z) =





Y
√

λ(Y A + ZC)
√

1 − λY A
⋆ Y 0
⋆ ⋆ Y



 . (11)

The following theorem shows that there is an upper bound

for E[Pt]:
Theorem 3 ([3]): Assume that (A, Q

1

2 ) is controllable,

(A, C) is detectable and λ > λ̄. Then

E[Pt] ≤ Vt ∀E[P0] ≥ 0 (12)

where Vt is found by the sequence Vt+1 = gλ(Vt), V0 =
E[P0]. Moreover, limt→∞ Vt = V̄ where V̄ is the fixed point

of (7), i.e. V̄ = gλ(V̄ ).
The last theorem states that the upper bound for

limt→∞ E[Pt] can be found by a LMI-problem.

Theorem 4 ([3]): If λ > λ̄, then the matrix V̄ = gλ(V̄ )
is given by

a) V̄ = limt→∞ Vt; Vt+1 = gλ(Vt) where V0 ≥ 0.

b) arg maxV tr{V }

subject to

[

AV A′ − V + Q
√

λAV C ′

⋆ CV C′ + R

]

≥ 0, V ≥ 0.

B. Precoding

To robustify the Kalman filter against random measure-

ment losses, we introduce a linear precoding. Instead of

transmitting yt directly, we add another block to the sender

as shown in Fig. 2. Thus, the new measurement equation is

ỹt = Tyt = TCxt + Tvt, (13)

where the precoding is done by the left-multiplication of the

original measurement yt with the matrix T ∈ R
m̃×m.

As can be seen in Fig. 2 and by Eq. (13), we require

the precoder to receive all measurement packets. After the

precoding, the virtual measurements can be send over inde-

pendent channels.

Although there is no restriction on the dimensions of T ,

we assume T to be a square matrix in this work. This has

the advantage that the necessary bandwidth is not changed

since the number of original and virtual measurements is

identical. All results, however, can be easily extended to

the non-square case. Note that a non-square matrix means

compression or adding redundancy, two interesting topics in

the field of channel coding.

There are two special cases of T where we do not expect

good results:

• T is singular. In this case, the precoding introduces

some redundant measurements which do not improve

the estimation if more than one of these is available to

the state estimator, i.e. there is no difference whether

they are lost or arrive if at least one was received.

• T is such that the system is not observable if one

virtual measurement is lost. As shown in the motivating

example, this might be the case for T = I . It might

also be possible to choose T such that the system is

not observable even if all virtual measurements arrive.

Obviously, both transforms should be avoided. Fortunately,

they will be automatically avoided while searching for an

optimal transformation.

C. Channel Model

In [3], the lossy network is modeled by the random

process γt. A proper model for the multichannel case is

slightly more complicated. We use a channel model in the

spirit of [9], which allows us to present the results in a

compact form.

We model the lossy network by a left-multiplication with

an erasure matrix Lt ∈ R
m̄×m̃ (m̄ ≤ m̃) which is the

identity matrix where a row is removed if the corresponding

measurement is lost. Hence, the dimension of Lt depends on

the loss of measurements. Note that we can not define Lt

as an identity matrix where a row is replaced by a row with

only zeros if the corresponding measurement is lost. This is

due to the fact that there is a subtle difference whether yt,i is

lost or yt,i = 0. Another reason will be clarified in Sec. III.

The following two examples will give the basic idea of this

notation. If all measurements arrive, then Lt is obviously the

identity matrix. If there are 3 measurements and the first and

second arrive, then we have m̃ = 3, m̄ = 2, and Lt = [ 1 0 0
0 1 0 ].

Finally, we define the set of all possible erasure constel-

lations L as L = {L̃1, . . . , L̃E} where E = 2m̃ is the total

number of error constellations. At each time instance t, Lt

is randomly chosen from L.

In the following, we will assume that the erasure process

is independent and identically distributed for each measure-

ment. Moreover, for simplicity of notation, we assume that

it does not depend on the channel. The probability that a

measurement arrives safely is given by the arrival rate λ.

The probability we(λ) that a particular L̃e is chosen is thus

2224



Ψ(Y, Z1, . . . , ZE , T )

=















Y
√

w1(λ)(Y A + Z1L̃1TC)
√

w2(λ)(Y A + Z2L̃2TC) · · ·
√

wE(λ)(Y A + ZEL̃ETC)
⋆ Y 0 · · · 0
⋆ ⋆ Y 0
...

...
...

. . .

⋆ ⋆ ⋆ Y















(20)

Γ(V, T )

=















AV A′ + Q − V
√

w1(λ)AV C′T ′L̃′
1

√

w2(λ)AV C′T ′L̃′
2 · · ·

√

wE(λ)AV C′T ′L̃′
E

⋆ Ξ1 0 · · · 0
⋆ ⋆ Ξ2 0
...

...
...

. . .

⋆ ⋆ ⋆ ΞE















(21)

where Ξe := L̃eTCV C′T ′L̃′
e + L̃eTRT ′L̃′

e.

we(λ) := λi(1 − λ)m̃−i, where i is the number of arrived

measurements and m̃ − i the number of lost measurements.

Note that the results of this work can be easily extended to

the case of non-identical arrival rates.

III. KALMAN FILTERING WITH LINEAR PRECODING

In this section, we combine the ideas of the previous

section in order to achieve one of the following goals:

Goal 1: Make the Kalman filter more robust against packet

loss.

Goal 2: Reduce the estimation error.

Before we show how to design the precoding matrix T , we

first derive some equations and theorems.

Combining the precoding and the channel model, we get

ȳt = Ltỹt = LtTCxt + LtTvt (14)

as input for the Kalman filter. Since the time update of the

Kalman filter does not depend on the measurements, it is

still

x̂t+1|t = Ax̂t|t, (15)

Pt+1|t = APt|tA
′ + Q. (16)

By replacing C with LtTC and R with LtTRT ′L′
t, (4) and

(5) for the measurement update become

x̂t+1|t+1 = x̂t+1|t + Pt+1|tC
′T ′L′

t

×
(

LtTCPt+1|tC
′T ′L′

t + LtTRT ′L′
t

)−1

× (ȳt+1 − LtTCx̂t+1|t), (17)

Pt+1|t+1 = Pt+1|t − Pt+1|tC
′T ′L′

t

×
(

LtTCPt+1|tC
′T ′L′

t + LtTRT ′L′
t

)−1

× LtTCPt+1|t. (18)

Obviously,
(

LtTCPt+1|tC
′T ′L′

t + LtTRT ′L′
t

)−1
can only

be calculated if Lt does not contain rows with only zeros.

The MARE for this case can be derived from (7) by

replacing λ with
∑E

e=1
we(λ), C with L̃eTC, and R with

L̃eTRT ′L̃′
e:

g(X) = AXA′ + Q −
E

∑

e=1

we(λ)AXC′T ′L̃′
e

×
(

L̃eTCXC′T ′L̃′
e + L̃eTRT ′L̃′

e

)−1

L̃eTCXA′ (19)

where E is the total number of error constellations and we(λ)
is the probability that a particular L̃e will occur. In order to

get the upper bounds λ̄ and V̄ , Theorem 2 and 4 become

now:

Theorem 5: The upper bound λ̄ is given by the solution

of the following optimization problem

λ̄ = argmin
λ

Ψ(Y, Z1, . . . , ZE, T ) > 0 0 ≤ Y ≤ I,

where Ψ(.) is given in (20) at the top of the page.

Theorem 6: If λ > λ̄, then the matrix V̄ = gλ(V̄ ) is

given by

(a) V̄ = limt→∞ Vt; Vt+1 = gλ(Vt) where V0 ≥ 0.

(b) arg maxV tr{V } subject to Γ(V, T ) ≥ 0, V ≥ 0,

where Γ(V, T ) is given in (21) at the top of the page.

The proof of these theorems follows the same line as in [4]

and is omitted here.

Now we can choose T according to the two goals:

Goal 1: Make the Kalman filter more robust against packet

loss. Here we choose T in such a way that the upper

bound λ̄ is minimized. Consequently, we use Theo-

rem 5 and search for Y, Z1, . . . , ZE and T such that

arg minλ Ψ(Y, Z1, . . . , ZE , T ) > 0 is minimized. Note

that we have to use the upper bound λ̄ to obtain the

optimal T because we cannot calculate λc exactly.

Goal 2: Minimize the estimation error. Here we choose T
in such a way that the estimation error (xt − x̂t) is

minimized for a given λ. This means, we use Theorem 6

and search for T such that tr{V̄ } is minimized. This
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is especially interesting, if the network is given and the

packet arrival rates are known. Again, we have to use

the upper bound V̄ because limt→∞ E[Pt] is not known

exactly.

Unfortunately, both problems are nonconvex and hence

very difficult to solve since there does not exist any algo-

rithm, which can guarantee to find the global optimal solution

of a nonconvex problem. Reformulating these problems as

convex ones would be very valuable.

Finally, we show that the rows of T can be normalized

without affecting the precoding. This will simplify the anal-

ysis of the examples in Sec. IV.

Lemma 1: Let T be an arbitrary precoding matrix. The

solution of the MARE X = g(X) in (19) and the upper

bounds on the critical arrival rate λ̄ are invariant with

respect to a scaling of the rows of T , i.e. by replacing T
with NT where N = diag(n11, . . . , nm̃m̃) and nii 6= 0, ∀i.

Proof: A scaling of the rows of the precoding matrix

T corresponds to the replacement of LtT in (14) by LtNT .

Since Lt contains different row vectors of the identity matrix,

a scaling of the columns of Lt by LtN can also be written

as a scaling of the rows of Lt, i.e. ÑLt, where Ñ = LtNL′
t

is a m̃×m̃ invertible diagonal matrix containing m̃ diagonal

elements of N . Hence, the net effect of a scaling of the rows

of T is to scale the measurements ȳt which is an invertible

process.

IV. EXAMPLES

In this section, we present two examples to show the

benefits of the proposed method. For the sake of clarity, we

consider two relatively simple examples with two measure-

ments (m = 2). We parametrize the precoding transform

as T :=
[

1 t1
t2 1

]

according to Lemma 1. Now we can plot

λ̄ or tr{V̄ } over t1 and t2 and easily see the influence of

T on these performance measures. Note that t1 = t2 = 0
corresponds to the no precoding case.

Example 1: First, we reconsider the motivating example

of Sec. I-A with

A =

[

2.5 0
0 2

]

and C =

[

1 0
0 1

]

.

Moreover, we set Q = 10I and R = 2.5I .

Without the precoding transform, we obtain λ̄ = 0.84.

Hence, if more than 84% of the measurements arrive, then

the expected value of the covariance matrix Pt is guaranteed

to be bounded.

In order to achieve Goal 1, we search for a transform

which minimizes λ̄. To easily see the influence of T on λ̄,

Fig. 3 shows λ̄ over T . We see that λ̄ can be significantly

reduced by a proper precoding transform and it would be

easy to find a transform such that the covariance matrix

converges even for an arrival rate less than 75%. Note that

there is a dramatic increase in λ̄ if t2 = 0. In this case,

the more unstable first mode is no longer observable if the

first virtual measurement is lost. Moreover, there are peaks

in λ̄ along the lines where T is singular, i.e. t1 = 1/t2.

t1
t2

λ̄
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-3

-2
-1

0
1

2
3

4

0.72
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0.76
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0.8
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-4
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-2
-1

0
1

2
3

4
0.7

0.8

0.9

Fig. 3. Upper bound λ̄ of the critical arrival rate over the precoding
matrix T for Example 1
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Fig. 4. Upper bound tr{V̄ } of the expected estimation error over the
precoding matrix T for Example 1

However, changes in λ̄ are not only due to observability and

singularity. Even if the system is observable with one virtual

measurement and T is not singular, λ̄ depends on T .

In order to achieve Goal 2, we ask for a transform which

minimizes tr{V̄ } for a fixed λ. Fig. 4 shows log(tr{V̄ })
over T for λ = 0.85. Here, we see that tr{V̄ } is get-

ting huge when T is chosen such that the system is not

observable if one virtual measurement is lost. Moreover,

tr{V̄ } is increased along the line t1 = 1/t2, where T
is singular. For T = I , we get tr{V̄ } = 415.94. Using

MATLAB’s fminsearch function, we obtain the optimal1

transform Topt =
[

1 0.6803
−1.4813 1

]

and tr{V̄ } = 148.69,

which improves the quality of the Kalman filter considerably.

Note that the peaks in Fig. 3 and 4 occur when T is

singular and therefore both transmitted measurements are

redundant. The key of the precoder T is that each row

1Obviously, we can not guarantee that this, and the following transforms,
are globally optimal.

2226



t1
t2

λ̄

-6
-4

-2
0

2
4

6

0.75

0.8

0.85

0.9

0.95

-6
-4

-2
0

2
4

6
0.7

0.8

0.9

1

Fig. 5. Upper bound λ̄ of the critical arrival rate over the precoding
matrix T for Example 2

has to point into the most important direction for the state

estimation task but also to make each row a little bit different

so that the combination of both allows a better estimation of

the state. This is analog to MDC where the most important

direction is the direction of maximum scatter of the data

vectors which is called the principal component, see [7].

Example 2: The previous example is composed of two

unstable systems which become unobservable if one of the

measurements is lost. Now, we look at a system which is

observable if any of the two packets arrive:

A =

[

2.5 0.25
1 2

]

and C =

[

1 0
1 1

]

.

Note that this system is not observable if t1 = ±1/
√

5 ≈
±0.447 or t2 = ±

√
5 ≈ ±2.236 and the corresponding

measurement is lost.

Again, we set Q = 10I and R = 2.5I . Here, we get

λ̄ = 0.7618 without the correlating transform. Fig. 5 shows λ̄
over T and we see similar effects as in the previous example

for the two special cases of T . As in the previous example,

λ̄ depends not only on these two effects. In this example, we

used fminsearch to find the transform which minimizes λ̄
and obtained Topt =

[

1 17.2102
−0.053 1

]

. Using this correlating

transform, we get λ̄ = 0.7039. Hence, even if the original

system is observable if one measurement is lost, we still can

reduce λ̄ by a correlating transform.

As in the previous example, we now fix λ to 0.88 and

search for that transform which minimizes tr{V̄ }. Fig. 6

shows log(tr{V̄ }) over T . Again, we see a significant

influence of the two special cases. In this example, we get

tr{V̄ } = 103.27 for the original system and tr{V̄ } = 82.76
for the optimal transform Topt = [ 1 4.1512

0.5653 1 ]. Hence, the

correlating transform improves the quality of the Kalman

filter although the original system is observable if one

measurement is lost.
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Fig. 6. Upper bound tr{V̄ } of the expected estimation error over the
precoding matrix T for Example 2

V. CONCLUSION

This paper shows how to design a linear precoding matrix

for a Kalman filter in the presence of lossy transfer channels.

We showed that the precoding matrix can be chosen such that

the Kalman filter will be more robust against measurement

loss or to reduce the estimation error. Unfortunately, this is

a nonconvex optimization problem and reformulating it as a

convex one would be very valuable. The results indicate that

the observer and the channel coder have to be considered

together to design a good observer in a networked control

system.
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