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The document at hand describes in a few summarized steps the attached software for the
Synthesis of consistent graphs (SONG) algorithm. For further details refer to the bibliography
or source code.

1 Usage

If there is no precompiled mex-file for your Matlab distribution you have to run song_make in your
Matlab command window, first.
Then the function song gives access to the SONG algorithm and requires three input arguments:

First input argument is a 2×N matrix E of natural numbers indicating the start and end vertices
of the n-th edge in the graph (n = 1, . . . , N). The second input argument is an 1 × N -cell array
W that contains the edge weights corresponding to E. Third input argument is a structure that
specifies additional parameters for the synthesis:

• .eps: is a double value that specifies the threshold for approximate consistency. If zero, exact
consistency is applied as the cyclic sum must be exactly zero.

• .consistency: is a string that can be choses between full consistency [2] (=full) or partial
consistency [3] (=partial).

• optional part (default values are marked by underline):

– .n0={0,1}: chooses the root vertex of the spanning tree that has either maximal degree
(=0) or minimal degree (=1)

– .st={0,1}: defines the type of search for the spanning tree used for determining the
fundamental loops (BFS=0, DFS=1).

If the third input argument is missing the default values are eps=0, consistency=partial, st=0
and n0=0.
The return argument is a structure array C where each element represents a component with its

consistent solutions. The components are biconnected (sub)graphs which means that each edge is
part of at least one loop and can be checked for consistency. The elements of C contain the following
entries:

• .E: edge matrix of the component (the sorting of the edges may differ from input)

• .G: matrix of double values that contains the consistent graphs in each row. The edge weights
are sorted according to E in the previous bullet. Missing values – which occur in partial
consistency – are denoted by NaN.
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• .eval: additional structure with the following values (for evaluation purposes)

– .FL_matrix: represents the fundamental loop (FL) matrix that is used in the synthesis
and has dimension (N − M + 1) × N ; M is the number of vertices. It can be used to
adjust the eps value.

– .num_of_cFLs_per_FL: number of consistent weight combinations for each FL, according
to the order in the FL matrix previously.

– .num_of_cFLs_per_graph: number of consistent fundamental loops (cFL)s used to syn-
thesize each partially consistent graph. For fully consistent graphs this is equal to the
number of FLs. The order corresponds to the consistent graphs in G.

2 Theory

Given a graph G(V,E) with vertex set V = {v1, . . . , vM} and edge set E = {e1, . . . , eN}, where each
edge en has a weight set Wn. A graph G(V,E,w) with the weight assignment w ∈ W1 × · · · ×WN

is called consistent, when the sums of all loops are zero, e.g. wij + wjk + wki = 0 for the vertex
triple (i, j, k).1

Instead of testing all
∏N

n=1
|Wn| combinations on all possible loops in the graph, the SONG

algorithm finds efficiently all consistent weight assignments based on the FLs. Fig. 1 gives an
overview of the SONG algorithm.
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Figure 1: Block diagram

1. Split the given graph topologically in biconnected subgraphs (components). Generally, the
input graph can be unconnected and may contain bridge-edges (e4 in Fig. 2) that must be
removed. Moreover, cut vertices (v3 in Fig. 2) whose removal split a connected graph are

1This is the case for weights that stem from difference measures wij = pi − pj like Time Difference of Arrival
(TDOA) based speaker localization.
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duplicated for each neighboured subgraph. These subgraphs have independent loop sets. This
first block finds all biconnected subgraphs by the algorithm of Hopcroft and Tarjan [1] and
if necessary splits them. Then each component is processed separately.

2. Compute the FL matrix for each component. Therefore, consider the type of spanning tree
(BFS or DFS) and root vertex for the spanning tree (minimal or maximal degree) optionally
defined in the 3rd input argument.

3. For each FL li ∈ {−1, 0, 1}N , all weight combinations are considered to determine its consis-
tent combinations (cFLs). Therein, the approximate consistency is given as |lTi w| ≤ ǫ ·

√

||li||0
with the ǫ value given in the input (eps) and the l0-norm || · ||0 counting the nonzero elements
of a vector. The cFLs are stored for the subsequent merging and the number of cFLs for each
FLs are stored in num_of_cFLs_per_FL.

4. Depending on the chosen consistency, the algorithm of [2] for fully consistent graphs or the
algorithm of [3] for partially consistent graphs is chosen.2 The number of used cFLs are stored
in num_of_cFLs_per_graph. When the synthesis of one component has finished the next one
is being processed.

3 Example

Given the graph in Fig. 2, we illustrate the SONG algorithm.3
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Figure 2: Graph of M = 10 vertices and N = 13 edges.

The derived edge matrix is

Ein =

[

0 0 1 2 3 3 9 3 3 4 4 5 6
1 2 2 3 9 8 8 7 4 7 5 6 7

]

. (1)

The corresponding weight cell array is given in Table 1.
First the graph is splitted in three components, namely C1 = {v3, v4, v5, v6, v7}, C2 = {v3, v8, v9}

and C3 = {v0, v1, v2}. Edge e4 is not contained in any loop and can be removed. Moreover, v3
represents a cut vertex and thus the incident components C1 and C2 are disconnected and both
keep v3.
Then for each component the FLs are determined and the sets of cFLs are computed. The cFLs

are combined either to fully consistent graphs according to [2] or to partially consistent graphs

2Even though the synthesis of partially consistent graphs produces fully consistent graphs, too, the algorithm in [2]
is more efficient for the direct computation.

3This example is given in the attached Matlab demo.
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W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13

0.98 1.11 -0.09 1.39 12.00 6.15 -5.96 8.11 -1.11 4.00 2.15 4.85 1.89
2.06 -0.89 -1.99 -8.08 2.9 -0.89 -0.11 9.06 1.01 0.93

-0.62 -0.89

Table 1: Possible weights for the graph of Fig. 2

according to [3]. The result of the ith component is returned as a seperate edge matrix Eout,i

indicating the contained vertices and its consistent weight matrix Gi. For partial consistency the
missing edge weights of a consistent subgraph are given by the value NaN. With ǫ = 0.15 SONG
returns the solutions shown in Table 2.

Eout,1 : 3 4 4 5 3 6
4 5 7 6 7 7

G1 : -1.11 2.15 9.06 4.85 8.11 1.89
-0.11 NaN -0.89 NaN -0.89 NaN
NaN 1.01 4.00 0.93 NaN 1.89

Eout,2 : 3 3 9
8 9 8

G2 : 6.15 12.00 -5.96

Eout,3 : 0 1 0
2 2 1

G3 : 1.11 -0.09 0.98
-0.89 -1.99 0.98

Table 2: All approximately, partially consistent graphs from Fig. 2 with weights of Table 1
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