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1 Summary

Within this project, we aim to use synthetic data obtained from simulations to develop novel machine
learning-based decomposition algorithms for identifying the activity of individual motor units in skeletal
muscles. Compared to existing methods, we expect significant computational speed-ups and decom-
position algorithms that identify with much better accuracy more motor units. The results of applying
our newly developed algorithms to experimentally measured electromyographic (EMG) recordings will
improve the overall understanding of the control of the neuromuscular system. These novel machine
learning-based decomposition algorithms will be achieved by developing a 3D multi-domain model to
simulate the activity of selected motor units during iso- and non-isometric contractions in muscles of
arbitrary shape. The use of a conditional generative adversarial network (cGAN) will provide a flexible
and powerful framework for EMG to motor unit activity translation, even in a nonlinear environment. As
in silico experiments firing times of individual neurons are no longer unknown, computing the result-
ing EMG signal provides a basis for designing, training and validating novel machine learning-based
decomposition methods. Since the exact motor unit distribution is not known, new measures for com-
paring synthetic and actual EMG data will need to be developed. A further aim of this proposal is to
use these findings to extend the algorithms in such a way that it also can decompose motor units dur-
ing non-isometric contractions – something that cannot properly be decomposed with existing methods
yet. One path to achieve this is to utilise (continuum-mechanical) models to predict motion, and, hence,
deformation and the shift of the motor units during contraction. As such, this project directly links to the
vision of a “Digital Human Model” as outlined within the SimTech proposal.

2 State of the Art and Preliminary Work

2.1 State of the Art and Current Challenges

One of the few non-invasive and clinically available diagnostic tools to obtain insights into the function-
ing (or disfunctioning) of the neuromuscular system are based on analysing electromyographic (EMG)
recordings, i. e., measuring the activation-induced, resulting potentials on the skin surface. However,
gaining from the neuronal drive insights to the neuromuscular system is a challenging and still an open
research question. One of the crucial step hereby is the decomposition of the EMG signal to individual
contributors, i.e., the fibers associated with a single motor unit. For this purpose, several decomposi-
tion algorithms have been proposed, e.g., [L1, L2, L3]. Despite the use of high-density multi-electrode
arrays, there are still several challenges with respect to accuracy and reliability, e.g., [L4, L5], which
have to be met. Furthermore, existing decomposition methods are black-box methodologies aiming
to provide data for motor unit recruitment and thereby often ignoring any sensory inputs to the motor
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neuron pool. As the inputs to the motor neuron pool cannot be experimentally measured, developing
novel algorithms and validating them is challenging. The validation challenge is also true for existing al-
gorithms. Note, non-isometric contributions pose hereby a particular and largely unresolved challenge.
The challenge hereby is tracking the movement of individual motor units during contraction.

Mathematical models have a great potential to improve signal interpretation, in particular since there ex-
ist phenomenological or biophysical based motor unit recruitment models that can be used to generate
synthetic yet realistic EMG data that can be used for algorithm development and benchmarking. From a
simulation perspective, EMG signals are usually simulated by means of volume conductor models (see
[L6] for a detailed review). Thereby, skeletal muscle tissue is assumed to be an (anisotropic) ohmic
conductor and the bio-electrical activity arising from the depolarisation of the muscle fibre membranes
is represented by spatially distributed current sources / sinks. A biophysically more detailed description
of the propagation of action potentials along muscle fibres can be obtained by solving the monodomain
model (cf. [P3]), which can be considered to be an one-dimensional extension of Hodgkin-Huxley type
models. The biophysical models can hereby account for changes in the amplitude and propagation
velocity of the AP that result, for example, from membrane fatigue. While most of the existing (single-
physics) EMG models do not take into account tissue deformation, and hence are restricted to isometric
conditions [L7], multi-physics models coupling EMG models to continuum-mechanical models [P3], can
also simulate EMG generation during non-isometric conditions. The state of the are and the challenges
from an machine learning point of view are explained in detail in Section 2.1 of project PN2-4b.

2.2 Previous Work of the Applicants

The applicant has been the first, who developed a three-dimensional, continuum-mechanically and bio-
physically based, multi-scale skeletal muscle modelling framework that is capable of integrating neuro-
muscular recruitment principles in a natural way [P1]. This chemo-electro-mechanical skeletal muscle
modelling framework was extended in [P2] to also integrate a biophysical motor neuron pool model.
Based on the input from the motor neuron pool model and the resulting electro-physiological state of
skeletal muscle, i. e., the output of the chemo-electro-mechanical model, one can compute EMG sig-
nals for arbitrary muscle geometries [P3]. As computing the electro-physiological state of the skeletal
muscle models, i. e., computing the propagation of the electrical signals (action potentials) along the
respective muscle fibres is computational expensive, the applicant has teamed up with computer scien-
tists and mathematicians to solve for the electrical signals using large scale HPC systems [P5]. Further,
to speed up the computation of the electrical signals and the EMG, the applicant has developed model-
order-reduction techniques to solve for the respective EMG signal [P4] close to real time.

2.3 Project-Related Publications of the Applicants (max. 5)

[P1] O. Röhrle, J. B. Davidson, and A. J. Pullan. A physiologically based, multi-scale model of skeletal muscle structure
and function. Frontiers in Physiology, 3:1–14, 2012.

[P2] T. Heidlauf, F. Negro, D. Farina, and O. Röhrle. An integrated model of the neuromuscular system. In Neural Engi-
neering (NER),2013 6th International IEEE/EMBS Conference on, pages 227–230. IEEE, 2013.

[P3] M. Mordhorst, T. Heidlauf, and O. Röhrle. Predicting electromyographic signals under realistic conditions using a
multiscale chemo-electro-mechanical finite element model. Interface Focus, 5(2), February 2015.

[P4] M. Mordhorst, T. Strecker, D. Wirtz, T. Heidlauf, and O. Röhrle. Pod-deim reduction of computational emg models.
Journal of Computational Science, 19:86–96, 2017.

[P5] Bradley, C., Emamy, N., Ertl, T., Göddeke, D., Hessenthaler, A., Klotz, T., Krämer, A., Krone, M., Maier, B., Mehl, M.,
Rau T., and Röhrle, O. Enabling Detailed, Biophysics-based Skeletal Muscle Models on HPC Systems. Frontiers in
Physiology, 9 (816), 2018.
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3 Project Description

3.1 Project Goals

Within this project, we aim to use synthetic data obtained from simulations to develop novel machine
learning-based decomposition algorithms for determining the activity of individual motor units in skeletal
muscles. To do so we aim to

• develop strategies for motor unit recruitment (particularly including feedback),

• create a rich, artificial dataset comprising hundreds of neurons firing in different conditions and
different geometries,

• develop novel machine-learning based decomposition methods,

• test the validity of decomposition in ideal conditions (prescribed vs detected spikes), and

• test the robustness of decomposition against common real-life variable conditions.

3.2 Approach and Work Programme (3.5 years for doctoral researcher)

To achieve the above-mentioned project goals, we consider a part of the neuromuscular system con-
sisting of motor neurons, their recruitment properties, and a skeletal muscle that is surrounded by a
skin-fat layer. Motor neuron recruitment will be modelled by either a phenomenological or a biophys-
ically based motor neuron recruitment model. Muscular activity is modeled with the chemo-electro-
mechanical skeletal muscle model, which has been proposed by the lead applicant of this proposal. As
muscle gemoetry, we choose either a rectangular idealisation of a muscle, the biceps brachii, or the
tibialis anterior. From an experimental point of view, the biceps brachii and the tibialis anterior are ideal
muscles, as they are well studied and close to the skin surface, i. e. one typically obtains high quality
surface EMG signals. The computational framework builds on existing work [P1, P3, P5].

WP 1 Create a rich, synthetic dataset comprising hundreds of neurons firing in different
conditions and different geometries (Lead: O. Röhrle)

Task A1.1 – EMG Model Improvements: If, like in the case of skeletal muscle, one uses the bidomain
equations to model tissues with multiple intracellular spaces, then the solution of the discretised bido-
main equations is strongly mesh dependent. This is mainly due to the discontinuities of the action
potentials across the muscle fibres. To overcome this problem, we develop, based on the bidomain
modelling assumptions, a more general multi-domain framework by assuming that each muscle fibre
has its own individual intracellular space. Further, by introducing volume fractions for each individual
fibre type, we will derive a generalised form of the bidomain equations. Solving the resulting system will
require fast and efficient solvers for block-structured linear systems, which arise from the discretisation
of the governing equations of the multi-domain model.

Task A1.2 – Creation of Synthetic Dataset: Data capable of investigating the robustness of the de-
composition, needs to consider realistic conditions like electrode type, skin/fat tissue thickness, signal-
to-noise ratio, or the spatial distribution of motor units. The generalised multi-domain approach will
be utilised to create datasets that first only contain isolated firings of individual motor units. Then,
subsequently more complex dataset wills be generated, e. g., datasets resulting from utilising a phe-
nomenological motor unit recruitment model of Fuglevand (first an inter-spike variation of zero, before
choosing more realistic inter-spike variabilities). In addition to the Fuglevand model, we also will gen-
erate datasets derived by integrating the biophysical motor neuron pool model of Negro and Farina
(2011). In addition, geometrical considerations will be taken into account. e. g., for tissues with varying
skin thickness, for the biceps brachii and for the tibialis anterior. Depending on the process of develop-
ing the multi-domain method and generating the data, we will also consider non-isometric conditions.

Task A1.3 – Improvement of the motor neuron model by integrating feedback mechanism: This task
provides a direct link to PN2-3. Most motor neuron pool models ignore feedback mechanisms. While
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the impact of feedback for isometric contractions will most likely be minimal, it is believed that it has a
significant impact on the resulting EMG for non-isometric contractions. As appropriate, the feedback
mechanism identified in PN2-3 will be integrated into a new biophysical motor neuron recruitment model
and the new motor neuron model will be used to determine our synthetic datasets.

WP 2 Developing novel Machine-Learning-Based Algorithms for the Decomposition of the
Activity of Individual Motor Units (Lead: B. Yang)

Task A2.1 – Interaction with PN2-4b: Based on preliminary work, we will provide PN2-4b with simulated
EMG data right at the beginning. Further, PN2-4a acts as a link to PN2-3. It defines the experimental
set-up and collects experimental data using the high-density EMG recording equipment available at
SimTech’s Neuromechanics Lab, e. g. for the biceps brachii and the tibialis anterior subject to various
isometric conditions. Moreover, as synthetic data from WP1 will become available, the synthetic data
will be exchanged via SimTech’s open-access data management environment OpenDash.

Note, these are only tasks associated with this sub-project. For further details of this task see PN2-4b.

WP 3 Test the accuracy and robustness of decomposition against common real-life variable
conditions (Lead: O. Röhrle/B. Yang)

Task A3.1 – Benchmarking and validation of the novel decomposition algorithm: The validity of the
decomposition algorithm will be assessed by testing the algorithm first under ideal conditions. To do so,
we investigate the difference between the prescribed versus detected spikes for different test scenarios.
Given the complexity of the decomposition, it is likely that more suitable measures will need to be
investigated, e. g., taking into account false positives. The goal are new Synthesis-Decomposition-
Compare benchmark tests.

Task A3.2 – Robustness of the decomposition algorithms with respect to noisy data: In terms of the
robustness of the decomposition, real-life conditions, such as the choice of electrode, skin and fat
tissue thickness, signal-to-noise ratio and the motor unit distribution, need to be investigated. Noise, for
example, can be investigated by contaminating spike trains, e. g., by adding or removing 5% - 50% of the
spikes, and evaluating the outcome of the decomposition algorithm. Furthermore, new measures and
analysis techniques need to be developed for testing the decomposition algorithm with experimentally
measured data. This requires a systematic approach to analyse the various different error types.

Task A3.3 – Publishing benchmark problems for testing motor unit decomposition algorithms: The test
will be published in a peer-reviewed journal. The data will be made available via the OpenDash platform.

4 Relevance for the Project Network and the Cluster

4.1 Relation to the Focus Challenges and Goals of the Project Network

The proposed project aims to address two focus challenges in data-integrated simulation science: (i)
bridging data-poor and data-rich scales and (ii) merging physics- and data-based modelling. Both focus
challenges will be simultaneously addressed within PN2-4 by developing novel multi-scale simulations
predicting the electro-physiological state during (non-)isometric contractions. This is essential to train,
analyse, and validate the proposed novel motor unit decomposition method. The challenge is to bridge
data-poor scales, i. e., the input to or the output from the motor neuron pool (recruitment), with the
data-rich scale, i. e., detailed spatial and temporal information about the electro-physiological and me-
chanical state of (parts of) the musculoskeletal system, to gain more information about the behaviour of
the neuromuscular system. One key challenge will be to validate the proposed machine-learning based
decomposition algorithms. While simulated cases provide excellent test and training data, the challenge
will be to apply these methods to real data and overcome the inter-subject variability of biological sys-
tems. This challenge also addresses the “Individualisation” research question posed within this project
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network. Furthermore, by extending the newly developed methods to non-isometric cases will require
efficient and resource-limited simulations – a further research question of this project network.

4.2 Cooperation in ExC 2075

PN2 links and collaborates with the following projects (ordered by its intensity of collaboration):

PN2-3 One of the research focus of PN2-3 is to use EMG data to link sensory feedback and mo-
tor command strategies with EMG. While PN2-3 benefits from our novel decomposition algo-
rithms, PN2-4 utilises the experimental setup to obtain EMG measurements.

PN7-1 The idea of PN7-1 is to enable complex musculoskeletal models in a pervasive computing
environment. PN7-1 aims to use a hierarchy of recruitment models to drive the system. One of
the recruitment models can be EMG measurements. For that reliable and fast decomposition
methods are needed.

PN5-7 Profs Haasdonk and Pflüger focus in PN5-7 on physics- and data-based surrogate models for
mechanical systems for UQ and beyond. Based on previous collaborations with both PN5-7
PIs, collaborations between PN2-4 and PN5-7 will benefit from surrogate models developed
in PN5-7 to eventually realise model-based approches to decompose motor unit activity under
non-isometric conditions.

PN4-4 Closely following project PN4-4 on “Theoretical Guarantees for Predictive Control in Multi-
Agent Robotics Applications” (Profs Eberhard und Allgöwer) will potentially lead to new collab-
orations. The distributed control approach could potentially be translated to models of muscular
recruitment, i. e., developing novel motor unit pool models for muscular recruitment.

4.3 Approval by the Project Network Board

The key focus of PN2-4 is on utilising multi-X models and machine-learning tools for developing novel
motor unit decomposition methods in order to investigate aspects of the system response, i. e., the
neuromuscular system. Project PN2-4 contributes to two focus challenges identified by the Cluster
(FC2, FC3) and two research questions identified by the project network (RQ2, RQ5). Moreover, PN2-4
links to PN2-3 and significantly contributes to the SimTech’s vision of a “Digital Human Model”.

Therefore, the Project Network Board approves this project proposal.
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6 Funds Requested and justification of additional funds

6.1 Standard funding

This project applies for the following standard package of funding:

1st year 2nd year 3rd year 4th year Total

Doctoral Position (TV-L 13) 0.5 0.5 0.5 0.25 1.75 years

PostDoc Position (TV-L 13) - - - - 0 years

HiWi hours (10h/week) 0.5 0.5 0.5 0.5 1.75 years

Consumables 1.000e 1.000e 1.000e 500e 3.500e

Travel 500e 1.500e 1.500e 1.500e 5.000e

Investments 750e 750e 750e 0e 2.250e

Total 2.250e 3.250e 3.250e 2.000e 10.750e

This project is ideal for a PhD student with knowledge about the musculoskeletal anatomy and physi-
ology, advanced knowledge in computational techniques and signal processing, e.g. a person with a
master in biomedical engineering who focused during his/her studies on Computational Biomechanics
and Signal Processing. It provides the student with unique aspects to become an expert in the field of
neuromechanics. Note, while only funding for a 0.5 position is requested, the research outline herein
is for a full-time PhD student. The sudent will also be paid a 100% position. The missing half of the
funding will be supplemented by Prof. Oliver Röhrle, PhD. The PhD student will closely engage with the
PhD student of PN2-4B and the PhD student of PN2-3A.

The travel costs above deviate a bit from the standard rates. They have been budgeted such that
the PhD student can attend one international conference within Year 2-4. The main equipment (EMG
recording devices) exists already and the need for electrodes, etc. are already budgeted within the
standard rates for consumables.

6.2 Extra funding for specific instrumentation and consumables (if applicable)

Beyond the standard package, we apply for the following extra funds for the following reasons: NONE.

Experimental measurements are conducted within the Neuromechanics Lab and are a “by-product” of
PN2-3A.

6.3 Total funding requested

Standard funding (without personnel) 2.250e 3.250e 3.250e 2.000e 10.750e

Extra funding 0e 0e 0e 0e 1.000e

Total 2.250e 3.250e 3.250e 2.000e 10.750e


